Difference between revisions of "005 Sample Final A, Question 3"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 1
+
! Foundations:
 +
|-
 +
|1) How do you compose two functions, such as given <math>f = x^2</math>&nbsp; and &nbsp; <math>g = x + 1</math>, what is f<math>\circ</math>g?
 +
|-
 +
|2) When should a point x be in the domain of f<math>\circ</math>g?
 +
|-
 +
|Answers:
 +
|-
 +
|1) We replace all occurrences of x in f with g, so <math>f\circ g = (x + 1)^2</math>.
 +
|-
 +
|2) A point should be in the domain of f<math>\circ</math>g when it is in the domain of g, and g(x) is in the domain of f.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 1:
 
|-
 
|-
 
|First we find the domain of g. Since f <math>\circ</math> g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f <math>\circ</math> g. The domain of g is <math>[1, \infty)</math>.
 
|First we find the domain of g. Since f <math>\circ</math> g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f <math>\circ</math> g. The domain of g is <math>[1, \infty)</math>.
Line 9: Line 23:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 2
+
! Step 2:
 
|-
 
|-
 
|To find f <math>\circ</math> g we replace any occurrence of x in f with g, to yield <math>(\sqrt{x - 1})^2 + 1 = x - 1 + 1 = x </math>
 
|To find f <math>\circ</math> g we replace any occurrence of x in f with g, to yield <math>(\sqrt{x - 1})^2 + 1 = x - 1 + 1 = x </math>
Line 15: Line 29:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Final Answers:
 
|-
 
|-
 
|f <math>\circ</math> g = <math> x </math>, and the domain is <math>[1, \infty)</math>.
 
|f <math>\circ</math> g = <math> x </math>, and the domain is <math>[1, \infty)</math>.
 
|}
 
|}

Revision as of 20:12, 21 May 2015

Question Find f g and its domain if


Foundations:
1) How do you compose two functions, such as given   and   , what is fg?
2) When should a point x be in the domain of fg?
Answers:
1) We replace all occurrences of x in f with g, so .
2) A point should be in the domain of fg when it is in the domain of g, and g(x) is in the domain of f.
Step 1:
First we find the domain of g. Since f g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f g. The domain of g is .
Step 2:
To find f g we replace any occurrence of x in f with g, to yield
Final Answers:
f g = , and the domain is .