Difference between revisions of "005 Sample Final A, Question 14"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|We start with the left hand side. We have <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin(\theta)}{\cos(\theta)}\Bigg(\frac{1+\sin(\theta)}{1+\sin(\theta)}\Bigg)</math>.
 
|}
 
|}
  
Line 13: Line 13:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|  
+
| Simplifying, we get <math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{1-\sin^2(\theta)}{\cos(\theta)(1+\sin(\theta))}</math>.
 
|}
 
|}
  
Line 19: Line 19:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|  
+
| Since <math>1-\sin^2(\theta)=\cos^2(\theta)</math>, we have
 
|-
 
|-
|  
+
|<math>\frac{1-\sin(\theta)}{\cos(\theta)}=\frac{\cos^2(\theta)}{\cos(\theta)(1+\sin(\theta))}=\frac{\cos(\theta)}{1+\sin(\theta)}</math>
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 4:
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 5:
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Final Answer:
 
|-
 
|
 
 
|}
 
|}

Revision as of 13:14, 20 May 2015

Question Prove the following identity,


Step 1:
We start with the left hand side. We have .
Step 2:
Simplifying, we get .
Step 3:
Since , we have