Difference between revisions of "005 Sample Final A, Question 22"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
| The sequence is a geometric sequence. The common ratio is <math>r=\frac{-1}{3}</math>.
 
|}
 
|}
  
Line 13: Line 13:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|  
+
| The formula for the nth term of a geometric series is <math>a_n=ar^{n-1}</math> where <math>a</math> is the first term of the sequence.
 +
|-
 +
| So, the formula for this geometric series is <math>a_n=(-3)\left(\frac{-1}{3}\right)^{n-1}</math>.
 
|}
 
|}
  
Line 19: Line 21:
 
! Step 3:
 
! Step 3:
 
|-
 
|-
|  
+
| For geometric series, <math>\displaystyle{\sum_{k=1}^\infty a_k}=\frac{a}{1-r}</math> if <math>|r|<1</math>. Since <math>|r|=\frac{1}{3}</math>,
 
|-
 
|-
|  
+
| we have <math>\displaystyle{\sum_{k=1}^\infty a_k}=\frac{-3}{1-\frac{-1}{3}}=\frac{-9}{4}</math>.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Step 4:
+
! Final Answer:
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Step 5:
 
|-
 
|
 
 
|-
 
|-
|
+
| <math>a_n=(-3)\left(\frac{-1}{3}\right)^{n-1}</math>
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
! Final Answer:
 
 
|-
 
|-
|  
+
|<math>\frac{-9}{4}</math>
 
|}
 
|}

Revision as of 13:03, 20 May 2015

Question Consider the following sequence,


     a. Determine a formula for , the n-th term of the sequence.
     b. Find the sum

Step 1:
The sequence is a geometric sequence. The common ratio is .
Step 2:
The formula for the nth term of a geometric series is where is the first term of the sequence.
So, the formula for this geometric series is .
Step 3:
For geometric series, if . Since ,
we have .
Final Answer: