Difference between revisions of "005 Sample Final A, Question 12"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "''' Question ''' Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions. {| class="mw-collapsib...")
 
Line 3: Line 3:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1:
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
| Since <math>\sec(\theta)=-2</math>, we have <math>\cos(\theta)=\frac{1}{\sec(\theta)}=\frac{-1}{2}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2:
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
| We look for solutions to <math>\theta</math> on the unit circle. The two angles on the unit circle with <math>\cos(\theta)=\frac{-1}{2}</math> are <math>\theta=\frac{2\pi}{3}</math> and <math>\theta=\frac{4\pi}{3}</math>.
 
|-
 
|-
|c) False. <math>y = x^2</math> does not have an inverse.
+
|But, <math>\tan\left(\frac{2\pi}{3}\right)=-\sqrt{3}</math>. Since <math>\tan(\theta)>0</math>. we must have <math>\theta=\frac{4\pi}{3}</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 3:
 
|-
 
|-
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
| The remaining values of the trig functions are
 
|-
 
|-
|e) True.
+
|<math>\sin(\theta)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>,
 
|-
 
|-
|f) False.
+
| <math>\tan(\theta)=\tan\left(\frac{4\pi}{3}\right)=\sqrt{3}</math>
 +
|-
 +
|<math>\csc(\theta)=\csc\left(\frac{4\pi}{3}\right)=\frac{-2\sqrt{3}}{3}</math> and
 +
|-
 +
|<math>\cot(\theta)=\cot\left(\frac{4\pi}{3}\right)=\frac{\sqrt{3}}{3}</math>
 +
|}
 +
 
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Final Answer:
 +
|-
 +
| <math>\sin(\theta)==\frac{-\sqrt{3}}{2}</math>
 +
|-
 +
|<math>\cos(\theta)=\frac{-1}{2}</math>
 +
|-
 +
|<math>\tan(\theta)=\sqrt{3}</math>
 +
|-
 +
|<math>\csc(\theta)=\frac{-2\sqrt{3}}{3}</math>
 +
|-
 +
|<math>\cot(\theta)=\frac{\sqrt{3}}{3}</math>
 
|}
 
|}

Revision as of 09:51, 20 May 2015

Question Given that and , find the exact values of the remaining trig functions.


Step 1:
Since , we have .
Step 2:
We look for solutions to on the unit circle. The two angles on the unit circle with are and .
But, . Since . we must have .
Step 3:
The remaining values of the trig functions are
,
and


Final Answer: