Difference between revisions of "005 Sample Final A, Question 12"
Jump to navigation
Jump to search
(Created page with "''' Question ''' Given that <math>\sec(\theta) = -2</math> and <math>\tan(\theta) > 0 </math>, find the exact values of the remaining trig functions. {| class="mw-collapsib...") |
Kayla Murray (talk | contribs) |
||
| Line 3: | Line 3: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | ! | + | ! Step 1: |
|- | |- | ||
| − | | | + | | Since <math>\sec(\theta)=-2</math>, we have <math>\cos(\theta)=\frac{1}{\sec(\theta)}=\frac{-1}{2}</math>. |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 2: | ||
|- | |- | ||
| − | | | + | | We look for solutions to <math>\theta</math> on the unit circle. The two angles on the unit circle with <math>\cos(\theta)=\frac{-1}{2}</math> are <math>\theta=\frac{2\pi}{3}</math> and <math>\theta=\frac{4\pi}{3}</math>. |
|- | |- | ||
| − | | | + | |But, <math>\tan\left(\frac{2\pi}{3}\right)=-\sqrt{3}</math>. Since <math>\tan(\theta)>0</math>. we must have <math>\theta=\frac{4\pi}{3}</math>. |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Step 3: | ||
|- | |- | ||
| − | | | + | | The remaining values of the trig functions are |
|- | |- | ||
| − | | | + | |<math>\sin(\theta)=\sin\left(\frac{4\pi}{3}\right)=\frac{-\sqrt{3}}{2}</math>, |
|- | |- | ||
| − | | | + | | <math>\tan(\theta)=\tan\left(\frac{4\pi}{3}\right)=\sqrt{3}</math> |
| + | |- | ||
| + | |<math>\csc(\theta)=\csc\left(\frac{4\pi}{3}\right)=\frac{-2\sqrt{3}}{3}</math> and | ||
| + | |- | ||
| + | |<math>\cot(\theta)=\cot\left(\frac{4\pi}{3}\right)=\frac{\sqrt{3}}{3}</math> | ||
| + | |} | ||
| + | |||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | ! Final Answer: | ||
| + | |- | ||
| + | | <math>\sin(\theta)==\frac{-\sqrt{3}}{2}</math> | ||
| + | |- | ||
| + | |<math>\cos(\theta)=\frac{-1}{2}</math> | ||
| + | |- | ||
| + | |<math>\tan(\theta)=\sqrt{3}</math> | ||
| + | |- | ||
| + | |<math>\csc(\theta)=\frac{-2\sqrt{3}}{3}</math> | ||
| + | |- | ||
| + | |<math>\cot(\theta)=\frac{\sqrt{3}}{3}</math> | ||
|} | |} | ||
Revision as of 09:51, 20 May 2015
Question Given that and , find the exact values of the remaining trig functions.
| Step 1: |
|---|
| Since , we have . |
| Step 2: |
|---|
| We look for solutions to on the unit circle. The two angles on the unit circle with are and . |
| But, . Since . we must have . |
| Step 3: |
|---|
| The remaining values of the trig functions are |
| , |
| and |
| Final Answer: |
|---|