Difference between revisions of "022 Exam 2 Sample A"
(→ Problem 9 ) |
(→ Problem 8 ) |
||
| Line 25: | Line 25: | ||
== [[022_Exam_2_Sample_A,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | == [[022_Exam_2_Sample_A,_Problem_8|<span class="biglink"><span style="font-size:80%"> Problem 8 </span>]] == | ||
<span class="exam"> | <span class="exam"> | ||
| − | Use differentials to approximate the change in profit given <math>x = 10</math> units and <math>dx = 0.2</math> units | + | Use differentials to approximate the change in profit given <math style="vertical-align: -5%">x = 10</math> units and <math style="vertical-align: 0%">dx = 0.2</math> units, where profit is given by <math style="vertical-align: -15%">P(x) = -4x^2 + 90x - 128</math>. |
== [[022_Exam_2_Sample_A,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | == [[022_Exam_2_Sample_A,_Problem_9|<span class="biglink"><span style="font-size:80%"> Problem 9 </span>]] == | ||
Revision as of 18:18, 13 May 2015
This is a sample, and is meant to represent the material usually covered in Math 22 for the second exam. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Problem 1
Find the derivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,\ln \frac{(x+5)(x-1)}{x}.}
Problem 2
Find the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,3x^2-12x+8.}
Problem 3
Find the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \frac{1}{3x+2}\,dx.}
Problem 4
Find the antiderivative of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int (3x+2)^4\,dx.}
Problem 5
Set up the equation to solve. You only need to plug in the numbers - not solve for particular values!
How much money would I have after 6 years if I invested $3000 in a bank account that paid 4.5% interest,
- (a) compounded monthly?
- (b) compounded continuously?
Problem 6
Find the area under the curve of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\,=\,\frac{8}{\sqrt{x}}} between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=4} .
Problem 7
Find the quantity that produces maximum profit, given the demand function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\,=\,90-3x} and cost function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\,=\,200-30x+x^2} .
Problem 8
Use differentials to approximate the change in profit given Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = 10} units and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dx = 0.2} units, where profit is given by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(x) = -4x^2 + 90x - 128} .
Problem 9
Find all relative extrema and points of inflection for the function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x) = \frac{2}{3}x^3 + x^2 - 12x} . Be sure to give coordinate pairs for each point. You do not need to draw the graph.
Problem 10
Use calculus to set up and solve the word problem: Find the length and width of a rectangle that has perimeter 48 meters and maximum area.