Difference between revisions of "005 Sample Final A, Question 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
 (Created page with "'''Question''' Find the inverse of the following function <math> f(x) = \frac{3x}{2x-1}</math>  {| class="mw-collapsible mw-collapsed" style = "text-align:left;" ! Final Answe...")  | 
				|||
| Line 2: | Line 2: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| − | !   | + | ! Step 1:  | 
|-  | |-  | ||
| − | |  | + | | Switch f(x) for y, to get <math>y = \frac{3x}{2x-1}</math>, then switch y and x to get <math>x = \frac{3y}{2y-1}</math>  | 
| + | |}  | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
| + | ! Step 2:  | ||
|-  | |-  | ||
| − | |  | + | | Now we have to solve for y:  | 
| − | + | <math> \begin{array}{rcl}  | |
| − | + | x & = & \frac{3y}{2y-1}\\  | |
| − | + | x(2y - 1) & = & 3y\\  | |
| − | + | 2xy - x & = & 3y\\  | |
| − | + | 2xy - 3y & = & x\\  | |
| − | + | y(2x - 3) & = & x\\  | |
| − | + | y & = & \frac{x}{2x - 3}  | |
| − | + | </math>  | |
|}  | |}  | ||
Revision as of 18:37, 10 May 2015
Question Find the inverse of the following function
| Step 1: | 
|---|
| Switch f(x) for y, to get , then switch y and x to get | 
| Step 2: | 
|---|
| Now we have to solve for y:
 Failed to parse (unknown function "\begin{array}"): {\displaystyle \begin{array}{rcl} x & = & \frac{3y}{2y-1}\\ x(2y - 1) & = & 3y\\ 2xy - x & = & 3y\\ 2xy - 3y & = & x\\ y(2x - 3) & = & x\\ y & = & \frac{x}{2x - 3} }  |