Difference between revisions of "005 Sample Final A, Question 3"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "'''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math> {| class="mw-collapsible mw-collapsed" style = "text-align:left...")
 
Line 1: Line 1:
 
'''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math>
 
'''Question ''' Find f <math>\circ</math> g and its domain if <math>f(x) = x^2+1 \qquad g(x)=\sqrt{x-1}</math>
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
! Final Answers
+
! Step 1
 
|-
 
|-
|a) False. Nothing in the definition of a geometric sequence requires the common ratio to be always positive. For example, <math>a_n = (-a)^n</math>
+
|First we find the domain of g. Since f <math>\circ</math> g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f <math>\circ</math> g. The domain of g is <math>[1, \infty)</math>.
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
! Step 2
 
|-
 
|-
|b) False. Linear systems only have a solution if the lines intersect. So y = x and y = x + 1 will never intersect because they are parallel.
+
|To find f <math>\circ</math> g we replace any occurrence of x in f with g, to yield <math>(\sqrt{x - 1})^2 + 1 = x - 1 + 1 = x </math>
|-
+
|}
|c) False. <math>y = x^2</math> does not have an inverse.
+
 
|-
+
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
|d) True. <math>cos^2(x) - cos(x) = 0</math> has multiple solutions.
+
! Final Answers
|-
 
|e) True.
 
 
|-
 
|-
|f) False.  
+
|f <math>\circ</math> g = <math> x </math>, and the domain is <math>[1, \infty)</math>.
 
|}
 
|}

Revision as of 09:21, 8 May 2015

Question Find f g and its domain if


Step 1
First we find the domain of g. Since f g = f(g(x)). So if x is not in the domain of g, it is not in the domain of f g. The domain of g is .
Step 2
To find f g we replace any occurrence of x in f with g, to yield
Final Answers
f g = , and the domain is .