Difference between revisions of "004 Sample Final A, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
! Foundations
 
! Foundations
 
|-
 
|-
|  
+
|1) What is the form of the partial fraction decomposition of <math>\frac{3x-37}{(x+1)(x-4)}</math>?
 +
|-
 +
|2) What is the form of the partial fraction decomposition of <math>\frac{4x^2}{(x-1){(x-2)}^2}</math>?
 
|-
 
|-
 
|Answer:
 
|Answer:
 
|-
 
|-
|
+
|1) <math>\frac{A}{x+1}+\frac{B}{x-4}</math>
 +
|-
 +
|2)<math>\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{{(x-2)}^2}</math>
 
|}
 
|}
  
Line 16: Line 20:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|
+
|We set <math>\frac{6x^2 + 27x + 31}{(x + 3)^2(x-1)}=\frac{A}{x-1}+\frac{B}{x+3}+\frac{C}{{(x+3)}^2}</math>.
|-
 
|
 
 
|}
 
|}
  
Line 24: Line 26:
 
! Step 2:
 
! Step 2:
 
|-
 
|-
|
+
|Multiplying both sides of the equation by <math>(x + 3)^2(x-1)</math>, we get
 +
|-
 +
|<math>6x^2+27x+31=A(x+3)^2+B(x+3)(x-1)+C(x-1)</math>.
 
|}
 
|}
  

Revision as of 16:33, 4 May 2015

Decompose into separate partial fractions.     

Foundations
1) What is the form of the partial fraction decomposition of ?
2) What is the form of the partial fraction decomposition of ?
Answer:
1)
2)


Solution:

Step 1:
We set .
Step 2:
Multiplying both sides of the equation by , we get
.
Step 3:
Step 4:
Final Answer:

Return to Sample Exam