Difference between revisions of "004 Sample Final A, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
 
Line 22: Line 22:
 
! Step 1:
 
! Step 1:
 
|-
 
|-
|The difference quotient we need to simply is <math>\frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>.
+
|The difference quotient is <math>\frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}</math>.
 
|}
 
|}
  

Latest revision as of 20:10, 28 April 2015

Find and simplify the difference quotient Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}} for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \sqrt{x - 3}}

Foundations
1) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x+h)=?}
2) How do you eliminate the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} in the denominator?
Answer:
1) We have Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x+h)=\sqrt{x+h-3}}
2) The difference quotient is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}} . To eliminate the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} in the denominator,
you need to multiply the numerator and denominator by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x+h-3}+\sqrt{x-3}} (the conjugate).

Solution:

Step 1:
The difference quotient is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}=\frac{\sqrt{x+h-3}-\sqrt{x-3}}{h}} .
Step 2:
Multiplying the numerator and denominator by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{x+h-3}+\sqrt{x-3}} , we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}=\frac{x+h-3-(x-3)}{h(\sqrt{x+h-3}+\sqrt{x-3})} }
Step 3:
Now, simplifying the numerator, we get
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}=\frac{h}{h(\sqrt{x+h-3}+\sqrt{x-3})} } . Now, we can cancel the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} in the denominator.
Thus, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} } .
Final Answer:
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{f(x + h) - f(x)}{h}=\frac{1}{(\sqrt{x+h-3}+\sqrt{x-3})} }

Return to Sample Exam