Difference between revisions of "009C Sample Final 3, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 9: | Line 9: | ||
<span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at <math style="vertical-align: -15px">\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math> | <span class="exam">(c) In Cartesian coordinates, find the equation of the tangent line at <math style="vertical-align: -15px">\bigg(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\bigg).</math> | ||
− | + | <hr> | |
− | + | [[009C Sample Final 3, Problem 7 Solution|'''<u>Solution</u>''']] | |
− | |||
− | |''' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | '''Solution | + | [[009C Sample Final 3, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:51, 2 December 2017
A curve is given in polar coordinates by
(a) Show that the point with Cartesian coordinates belongs to the curve.
(b) Sketch the curve.
(c) In Cartesian coordinates, find the equation of the tangent line at