Difference between revisions of "009C Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
 
::<math>f(x)=\sum_{n=0}^\infty a_n(x-3)^n.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 3, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|The Taylor polynomial of  &nbsp; <math style="vertical-align: -5px">f(x)</math> &nbsp; at &nbsp; <math style="vertical-align: -1px">a</math> &nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty}c_n(x-a)^n</math> where <math style="vertical-align: -14px">c_n=\frac{f^{(n)}(a)}{n!}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\bigg(-\frac{1}{3}\bigg)e^{-\frac{1}{3}x},</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f''(x)=\bigg(-\frac{1}{3}\bigg)^2 e^{-\frac{1}{3}x},</math>
 
|-
 
|and
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f^{(3)}(x)=\bigg(-\frac{1}{3}\bigg)^3e^{-\frac{1}{3}x}.</math>
 
|-
 
|If we compare these three equations, we notice a pattern.
 
|-
 
|Thus,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f^{(n)}(x)=\bigg(-\frac{1}{3}\bigg)^ne^{-\frac{1}{3}x}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\bigg(-\frac{1}{3}\bigg)e^{-\frac{1}{3}x},</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(3)=\bigg(-\frac{1}{3}\bigg)e^{-1}.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f^{(n)}(x)=\bigg(-\frac{1}{3}\bigg)^3e^{-\frac{1}{3}x},</math>
 
|-
 
|we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f^{(n)}(3)=\bigg(-\frac{1}{3}\bigg)^ne^{-1}.</math>
 
|-
 
|Therefore, the coefficients of the Taylor series are
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>c_n=\frac{\bigg(-\frac{1}{3}\bigg)^ne^{-1}}{n!}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Therefore, the Taylor series for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at &nbsp;<math style="vertical-align: -3px">x_0=3</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^\infty \bigg(-\frac{1}{3}\bigg)^n\frac{1}{e (n!)}(x-3)^n.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math>f^{(n)}(x)=\bigg(-\frac{1}{3}\bigg)^ne^{-\frac{1}{3}x},~f'(3)=\bigg(-\frac{1}{3}\bigg)e^{-1}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; <math>\sum_{n=0}^\infty \bigg(-\frac{1}{3}\bigg)^n\frac{1}{e (n!)}(x-3)^n</math>
 
|}
 
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:47, 2 December 2017

Consider the function

(a) Find a formula for the  th derivative    of    and then find  

(b) Find the Taylor series for    at    i.e. write    in the form


Solution


Detailed Solution


Return to Sample Exam