Difference between revisions of "009C Sample Final 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
Line 8: Line 8:
 
<span class="exam">(c) Compute &nbsp;<math style="vertical-align: -14px">y''=\frac{d^2y}{dx^2}.</math>
 
<span class="exam">(c) Compute &nbsp;<math style="vertical-align: -14px">y''=\frac{d^2y}{dx^2}.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 2, Problem 9 Solution|'''<u>Solution</u>''']]
|-
 
|How do you calculate &nbsp; <math style="vertical-align: -5px">y'</math> &nbsp; for a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;Since &nbsp; <math style="vertical-align: -5px">x=r\cos(\theta),~y=r\sin(\theta),</math>&nbsp; we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 2, Problem 9 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(a) &nbsp;
 
|-
 
|Insert sketch of graph
 
|}
 
  
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">r=\sin(2\theta),</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dr}{d\theta}=2\cos(2\theta).</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math>
 
|-
 
|we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{y'} & = & \displaystyle{\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}}\\
 
&&\\
 
& = & \displaystyle{\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}}
 
\end{array}</math>
 
|-
 
|since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\sin(2\theta)=2\sin\theta\cos\theta,~\cos(2\theta)=\cos^2\theta-\sin^2\theta.</math>
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We have &nbsp; <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 
|-
 
|So, first we need to find &nbsp; <math>\frac{dy'}{d\theta}.</math>
 
|-
 
|We have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using the resulting formula for &nbsp; <math>\frac{dy'}{d\theta},</math>&nbsp; we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}.</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;See above
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math style="vertical-align: -18px">y'=\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}</math>
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 
|-
 
|<math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}</math>
 
|}
 
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:36, 2 December 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  


Solution


Detailed Solution


Return to Sample Exam