Difference between revisions of "009C Sample Final 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
 
<span class="exam">Find the length of the curve.
 
<span class="exam">Find the length of the curve.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 9 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' The formula for the arc length &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; of a polar curve &nbsp;<math style="vertical-align: -5px">r=f(\theta)</math>&nbsp; with &nbsp;<math style="vertical-align: -4px">\alpha_1\leq \theta \leq \alpha_2</math>&nbsp; is
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_{\alpha_1}^{\alpha_2} \sqrt{r^2+\bigg(\frac{dr}{d\theta}\bigg)^2}d\theta.</math>
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sqrt{1+x^2}~dx?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;You could use trig substitution and let &nbsp;<math style="vertical-align: -1px">x=\tan \theta .</math>
 
|-
 
|'''3.''' Recall that <math>\int \sec^3x~dx=\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|+C.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 9 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to calculate &nbsp;<math style="vertical-align: -14px">\frac{dr}{d\theta}</math>.
 
|-
 
|Since &nbsp;<math style="vertical-align: -14px">r=\theta,~\frac{dr}{d\theta}=1.</math>
 
|-
 
|Using the formula in Foundations, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>L=\int_0^{2\pi}\sqrt{\theta^2+1}d\theta.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we proceed using trig substitution. Let &nbsp;<math style="vertical-align: -2px">\theta=\tan x.</math> &nbsp; Then, &nbsp;<math style="vertical-align: -1px">d\theta=\sec^2xdx.</math>
 
|-
 
|So, the integral becomes
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sqrt{\tan^2x+1}\sec^2xdx}\\
 
&&\\
 
& = & \displaystyle{\int_{\theta=0}^{\theta=2\pi}\sec^3xdx}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\sec x \tan x +\frac{1}{2}\ln|\sec x +\tan x|\bigg|_{\theta=0}^{\theta=2\pi}.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Since &nbsp; <math style="vertical-align: -4px">\theta=\tan x,</math>&nbsp; we have &nbsp;<math style="vertical-align: -1px">x=\tan^{-1}\theta .</math>
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{L} & = & \displaystyle{\frac{1}{2}\sec (\tan^{-1}(\theta)) \theta +\frac{1}{2}\ln|\sec (\tan^{-1}(\theta)) +\theta|\bigg|_{0}^{2\pi}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|.}\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{2}\sec(\tan^{-1}(2\pi))2\pi+\frac{1}{2}\ln|\sec(\tan^{-1}(2\pi))+2\pi|</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:14, 2 December 2017

A curve is given in polar coordinates by

Find the length of the curve.


Solution


Detailed Solution


Return to Sample Exam