Difference between revisions of "009C Sample Final 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam"> Find the interval of convergence of the following series. ::<math>\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math> <hr> 009C Sample Final 1, P...")
 
Line 3: Line 3:
 
::<math>\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
 
::<math>\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n^2}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 4 Solution|'''<u>Solution</u>''']]
|-
 
|'''1. Ratio Test'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;Let &nbsp; <math style="vertical-align: -7px">\sum a_n</math> &nbsp; be a series and &nbsp; <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> &nbsp; Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L<1,</math> &nbsp; the series is absolutely convergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 
|-
 
|'''2.''' After you find the radius of convergence, you need to check the endpoints of your interval
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;for convergence since the Ratio Test is inconclusive when &nbsp; <math style="vertical-align: -1px">L=1.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using the ratio test to find the interval of convergence. So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n \rightarrow \infty}\bigg|\frac{(-1)^{n+1}(x+2)^{n+1}}{(n+1)^2}}\frac{n^2}{(-1)^n(x+2)^n}\bigg|\\
 
&&\\
 
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\frac{n^2}{(n+1)^2}}\\
 
&&\\
 
& = & \displaystyle{|x+2|\lim_{n \rightarrow \infty}\bigg(\frac{n}{n+1}\bigg)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|\bigg(\lim_{n \rightarrow \infty}\frac{n}{n+1}\bigg)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|(1)^2}\\
 
&&\\
 
& = & \displaystyle{|x+2|.}\\
 
\end{array}</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|So, we have &nbsp;<math style="vertical-align: -6px">|x+2|<1.</math>&nbsp; Hence, our interval is &nbsp;<math style="vertical-align: -5px">(-3,-1).</math>&nbsp; But, we still need to check the endpoints of this interval
 
|-
 
|to see if they are included in the interval of convergence.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|First, we let &nbsp;<math style="vertical-align: -1px">x=-1.</math> &nbsp; Then, our series becomes
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}.</math>
 
|-
 
|We notice that this series is alternating.
 
|-
 
|Let &nbsp;<math style="vertical-align: -14px"> b_n=\frac{1}{n^2}.</math>
 
|-
 
|First, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{n^2}\ge 0</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{(n+1)^2}<\frac{1}{n^2}</math>
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n^2}=0.</math>
 
|-
 
|So, &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}</math> &nbsp; converges by the Alternating Series Test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Now, we let &nbsp; <math style="vertical-align: -1px">x=-3.</math>&nbsp; Then, our series becomes
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^{\infty} (-1)^n \frac{(-1)^n}{n^2}} & = & \displaystyle{\sum_{n=1}^{\infty} (-1)^{2n} \frac{1}{n^2}}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=1}^{\infty} \frac{1}{n^2}.}\\
 
\end{array}</math>
 
|-
 
|This is a convergent series by the p-test.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 5: &nbsp;
 
|-
 
|Thus, the interval of convergence for this series is &nbsp; <math>[-3,-1].</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>[-3,-1]</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:04, 2 December 2017

Find the interval of convergence of the following series.


Solution


Detailed Solution


Return to Sample Exam