Difference between revisions of "009C Sample Final 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
 
<span class="exam">(b) &nbsp; <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
 
<span class="exam">(b) &nbsp; <math>\sum_{n=1}^{\infty} \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|
 
'''1.''' For a geometric series <math>\sum_{n=0}^{\infty} ar^n</math> &nbsp; with &nbsp; <math>|r|<1,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\sum_{n=0}^{\infty} ar^n=\frac{a}{1-r}.</math>
 
|-
 
|
 
'''2.''' For a telescoping series, we find the sum by first looking at the partial sum &nbsp; <math style="vertical-align: -3px">s_k</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;and then calculate <math style="vertical-align: -14px">\lim_{k\rightarrow\infty} s_k.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^n e^{-n}} & = & \displaystyle{\sum_{n=0}^{\infty} \frac{(-2)^n}{e^n}}\\
 
&&\\
 
& = & \displaystyle{\sum_{n=0}^{\infty} \bigg(\frac{-2}{e}\bigg)^n.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Since &nbsp; <math style="vertical-align: -16px">2<e,~\bigg|-\frac{2}{e}\bigg|<1.</math>
 
|-
 
|So,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=0}^{\infty} (-2)^ne^{-n}} & = & \displaystyle{\frac{1}{1+\frac{2}{e}}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{\frac{e+2}{e}}}\\
 
&&\\
 
& = & \displaystyle{\frac{e}{e+2}.}\\
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|This is a telescoping series. First, we find the partial sum of this series.
 
|-
 
|Let &nbsp; <math style="vertical-align: -20px">s_k=\sum_{n=1}^k \bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math>
 
|-
 
|Then,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -14px">s_k=\frac{1}{2}-\frac{1}{2^{k+1}}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Thus,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\sum_{n=1}^{\infty}\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg)} & = & \displaystyle{\lim_{k\rightarrow \infty} s_k}\\
 
&&\\
 
& = & \displaystyle{\lim_{k\rightarrow \infty}\frac{1}{2}-\frac{1}{2^{k+1}}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}\\
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{e}{e+2}</math>
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:57, 2 December 2017

Find the sum of the following series:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam