Difference between revisions of "009C Sample Final 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
 
<span class="exam">(b) &nbsp; <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
 
<span class="exam">(b) &nbsp; <math style="vertical-align: -12px">\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009C Sample Final 1, Problem 1 Solution|'''<u>Solution</u>''']]
|-
 
|'''L'Hopital's Rule'''
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Suppose that <math>\lim_{x\rightarrow \infty} f(x)</math> &nbsp; and <math>\lim_{x\rightarrow \infty} g(x)</math> &nbsp; are both zero or both &nbsp; <math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;If <math>\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math> &nbsp; is finite or &nbsp; <math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;then <math>\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}=\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009C Sample Final 1, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{3-2x^2}{5x^2 + x +1}} & \overset{L'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{-4x}{10x+1}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{\frac{-4}{10}}\\
 
&&\\
 
& = & \displaystyle{-\frac{2}{5}}.
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Hence, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{3-2n^2}{5n^2+n+1}=-\frac{2}{5}.</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we switch to the limit to <math style="vertical-align: 0px">x</math> so that we can use L'Hopital's rule.
 
|-
 
|So, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\lim_{x \rightarrow \infty}\frac{\ln x}{\ln(3x)}} & \overset{l'H}{=} & \displaystyle{\lim_{x \rightarrow \infty}\frac{\big(\frac{1}{x}\big)}{\big(\frac{3}{3x}\big)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x \rightarrow \infty} 1}\\
 
&&\\
 
& = & 1.
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Hence, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \frac{\ln n}{\ln 3n}=1.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -14px">-\frac{2}{5}</math>
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">1</math>
 
|}
 
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:55, 2 December 2017

Compute

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam