Difference between revisions of "009B Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
Line 3: Line 3:
 
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
 
::<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 3, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''Direct Comparison Test for Improper Integrals'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g</math>&nbsp; be continuous on &nbsp;<math style="vertical-align: -5px">[a,\infty)</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; where &nbsp;<math style="vertical-align: -5px">0\le f(x)\le g(x)</math>&nbsp; for all &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -5px">[a,\infty).</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;'''1.'''&nbsp; If &nbsp;<math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math>&nbsp; converges, then &nbsp;<math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math>&nbsp; converges.
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;'''2.'''&nbsp; If &nbsp;<math style="vertical-align: -14px">\int_a^\infty f(x)~dx</math>&nbsp; diverges, then &nbsp;<math style="vertical-align: -14px">\int_a^\infty g(x)~dx</math>&nbsp; diverges.
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 3, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We use the Direct Comparison Test for Improper Integrals.
 
|-
 
|For all &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in &nbsp;<math style="vertical-align: -5px">[1,\infty),</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>0\le \frac{\sin^2(x)}{x^3} \le \frac{1}{x^3}.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -15px">\frac{\sin^2(x)}{x^3}</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{1}{x^3}</math>
 
|-
 
|are continuous on &nbsp;<math style="vertical-align: -5px">[1,\infty).</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^\infty \frac{1}{x^3}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \int_1^a \frac{1}{x^3}~dx}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{1}{-2x^2}\bigg|_1^a}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{1}{-2a^2}+\frac{1}{2}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{2}.}
 
\end{array}</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -15px">\int_1^\infty \frac{1}{x^3}~dx</math>&nbsp; converges,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\sin^2(x)}{x^3}~dx</math>
 
|-
 
|converges by the Direct Comparison Test for Improper Integrals.
 
|-
 
|
 
|}
 
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;converges (by the Direct Comparison Test for Improper Integrals)
 
|}
 
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:49, 2 December 2017

Does the following integral converge or diverge? Prove your answer!


Solution


Detailed Solution


Return to Sample Exam