Difference between revisions of "009B Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
Line 7: Line 7:
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
 
<span class="exam">(c) &nbsp;<math>\int_1^e \frac{\cos(\ln(x))}{x}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 3, Problem 2 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int \frac{1}{1+x^2}~dx=\arctan(x)+C</math>
 
|-
 
|'''2.''' How would you integrate &nbsp; <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Thus,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \frac{\ln x}{x}~dx} & = & \displaystyle{\int u~du}\\
 
&&\\
 
& = & \displaystyle{\frac{u^2}{2}+C}\\
 
&&\\
 
& = & \displaystyle{\frac{(\ln x)^2}{2}+C.}
 
\end{array}</math>
 
|-
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we notice
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx=\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+(4x)^2}~dx.</math>
 
|-
 
|Now, we use &nbsp;<math>u</math>-substitution.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=4x.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -1px">du=4dx</math>&nbsp; and &nbsp;<math>\frac{du}{4}=dx.</math>
 
|-
 
|Also, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=4x,</math>&nbsp; we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">u_1=4(0)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math>
 
|-
 
|Therefore, the integral becomes
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du.</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^{\frac{\sqrt{3}}{4}} \frac{1}{1+16x^2}~dx} & = & \displaystyle{\frac{1}{4}\int_0^{\sqrt{3}} \frac{1}{1+u^2}~du}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\arctan(u)\bigg|_0^{\sqrt{3}}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\arctan(\sqrt{3})-\frac{1}{4}\arctan(0)}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{4}\bigg(\frac{\pi}{3}\bigg)-0}\\
 
&&\\
 
& = & \displaystyle{\frac{\pi}{12}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=1+x^3.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">du=3x^2dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|-
 
|Therefore, the integral becomes
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\frac{1}{3}\int \frac{1}{u^2}~du.</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \frac{x^2}{(1+x^3)^2}~dx} & = & \displaystyle{\frac{1}{3}\int \frac{1}{u^2}~du}\\
 
&&\\
 
& = & \displaystyle{-\frac{1}{3u}+C}\\
 
&&\\
 
& = & \displaystyle{-\frac{1}{3(1+x^3)}+C.}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We use &nbsp;<math>u</math>-substitution.
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">u=\ln(x).</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -15px">du=\frac{1}{x}dx.</math>
 
|-
 
|Also, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation &nbsp;<math style="vertical-align: -5px">u=\ln(x),</math>
 
|-
 
|we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">u_1=\ln(1)=0</math>&nbsp; and &nbsp;<math style="vertical-align: -6px">u_2=\ln(e)=1.</math>
 
|-
 
|Therefore, the integral becomes
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -19px">\int_0^1 \cos(u)~du.</math>
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^e \frac{\cos(\ln(x))}{x}~dx} & = & \displaystyle{\int_0^1 \cos(u)~du}\\
 
&&\\
 
& = & \displaystyle{\sin(u)\bigg|_0^1}\\
 
&&\\
 
& = & \displaystyle{\sin(1)-\sin(0)}\\
 
&&\\
 
& = & \displaystyle{\sin(1).}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)''' &nbsp; &nbsp;<math>\frac{\pi}{12}</math>
 
|-
 
|&nbsp; &nbsp;'''(b)''' &nbsp; &nbsp;<math>-\frac{1}{3(1+x^3)}+C</math>
 
|-
 
|&nbsp; &nbsp;'''(c)''' &nbsp; &nbsp;<math>\sin(1)</math>
 
|}
 
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:41, 2 December 2017

Evaluate the following integrals.

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam