Difference between revisions of "009B Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam">Evaluate the following integrals or show that they are divergent: <span class="exam">(a)  <math>\int_1^\infty \frac{\ln x}{x^4}~dx</math> <span c...")
 
Line 5: Line 5:
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
 
<span class="exam">(b) &nbsp;<math> \int_0^1 \frac{3\ln x}{\sqrt{x}}~dx</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 2, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' How could you write &nbsp; <math style="vertical-align: -14px">\int_0^{\infty} f(x)~dx</math> so that you can integrate?
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; You can write &nbsp; <math>\int_0^{\infty} f(x)~dx=\lim_{a\rightarrow\infty} \int_0^a f(x)~dx.</math>
 
|-
 
|'''2.''' How could you write &nbsp; <math>\int_{0}^1 \frac{1}{x}~dx?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; The problem is that &nbsp;<math>\frac{1}{x}</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: 0px">x=0.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; So, you can write &nbsp;<math style="vertical-align: -15px">\int_{0}^1 \frac{1}{x}~dx=\lim_{a\rightarrow 0} \int_{a}^1 \frac{1}{x}~dx.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 2, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_1^\infty \frac{\ln x}{x^4}~dx=\lim_{a\rightarrow \infty} \int_1^a \frac{\ln x}{x^4}~dx.</math>
 
|-
 
|Now, we use integration by parts.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">dv=\frac{1}{x^4}dx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">v=\frac{1}{-3x^3}.</math>
 
|-
 
|Using integration by parts, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}\bigg|_1^a+\int_1^a \frac{1}{3x^4}~dx}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln x}{-3x^3}-\frac{1}{9x^3}\bigg|_1^a.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using L'Hopital's Rule, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_1^\infty \frac{\ln x}{x^4}~dx} & = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln a}{-3a^3}-\frac{1}{9a^3}-\bigg(\frac{\ln 1}{-3}-\frac{1}{9}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow \infty} \frac{\ln(a)}{-3a^3}+0+0+\frac{1}{9}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln(x)}{-3x^3}+\frac{1}{9}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{x}}{-9x^2}+\frac{1}{9}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{9}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we write
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx=\lim_{a\rightarrow 0^+} \int_a^1 \frac{3\ln x}{\sqrt{x}}~dx.</math>
 
|-
 
|Now, we use integration by parts.
 
|-
 
|Let &nbsp;<math style="vertical-align: -2px">u=3\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: -19px">dv=\frac{1}{\sqrt{x}}dx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{3}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">v=2\sqrt{x}.</math>
 
|-
 
|Using integration by parts, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0^+} (3\ln x)(2\sqrt{x})\bigg|_a^1-\int_a^1 \frac{6}{\sqrt{x}}~dx}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow 0^+} 6\sqrt{x}\ln(x)-12\sqrt{x}\bigg|_a^1.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, using L'Hopital's Rule, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^1 \frac{3\ln x}{\sqrt{x}}~dx} & = & \displaystyle{\lim_{a\rightarrow 0^+} (6\sqrt{1}\ln(1)-12\sqrt{1})-(6\sqrt{a}\ln(a)-12\sqrt{a})}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow 0^+} -12 -6\sqrt{a}\ln(a) +12\sqrt{a}}\\
 
&&\\
 
& = & \displaystyle{\lim_{a\rightarrow 0^+} -12 -6\sqrt{a}\ln(a)+0}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 0^+} -12-6\sqrt{x}\ln(x)}\\
 
&&\\
 
& = & \displaystyle{-12-\lim_{x\rightarrow 0^+} \frac{6\ln(x)}{\frac{1}{\sqrt{x}}}}\\
 
&&\\
 
& \overset{L'H}{=} & \displaystyle{-12-\lim_{x\rightarrow 0^+} \frac{\frac{6}{x}}{-\frac{1}{2x^{3/2}}}}\\
 
&&\\
 
& = & \displaystyle{-12+\lim_{x\rightarrow 0^+} 12\sqrt{x}}\\
 
&&\\
 
& = & \displaystyle{-12.}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>\frac{1}{9}</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>-12</math>
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:33, 2 December 2017

Evaluate the following integrals or show that they are divergent:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam