Difference between revisions of "009B Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam">Find the volume of the solid obtained by rotating the region bounded by the curves &nbsp;<math style="vertical-align: -4px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; about the line &nbsp;<math>y=2.</math>
 
<span class="exam">Find the volume of the solid obtained by rotating the region bounded by the curves &nbsp;<math style="vertical-align: -4px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">y=x^2</math>&nbsp; about the line &nbsp;<math>y=2.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009B Sample Final 2, Problem 3 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' You can find the intersection points of two functions, say &nbsp; <math style="vertical-align: -5px">f(x),g(x),</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; by setting &nbsp;<math style="vertical-align: -5px">f(x)=g(x)</math>&nbsp; and solving for &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|'''2.''' The volume of a solid obtained by rotating an area around the &nbsp;<math style="vertical-align: 0px">x</math>-axis using the washer method is given by 
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -18px">\int \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx,</math>&nbsp; where &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}</math>&nbsp; is the inner radius of the washer and &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}</math>&nbsp; is the outer radius of the washer.
 
|}
 
  
  
'''Solution:'''
+
[[009B Sample Final 2, Problem 3 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the intersection points of &nbsp;<math style="vertical-align: -5px">y=x</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=x^2.</math>
 
|-
 
|To do this, we need to solve
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">x=x^2.</math>
 
|-
 
|Moving all the terms on one side of the equation, we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{0} & = & \displaystyle{x^2-x}\\
 
&&\\
 
& = & \displaystyle{x(x-1).}
 
\end{array}</math>
 
|-
 
|Hence, these two curves intersect at &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=1.</math>
 
|-
 
|So, we are interested in the region between &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We use the washer method to calculate this volume.
 
|-
 
|The outer radius is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">r_{\text{outer}}=2-x^2</math>&nbsp;
 
|-
 
|and the inner radius is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">r_{\text{inner}}=2-x.</math>&nbsp;
 
|-
 
|Therefore, the volume of the solid is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{V} & = & \displaystyle{\int_0^1 \pi(r_{\text{outer}}^2-r_{\text{inner}}^2)~dx}\\
 
&&\\
 
& = & \displaystyle{\int_0^1 \pi((2-x^2)^2-(2-x)^2)~dx.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|Now, we integrate to get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{V} & = & \displaystyle{\pi \int_0^1 ((4-4x^2+x^4)-(4-4x+x^2))~dx}\\
 
&&\\
 
& = & \displaystyle{\pi \int_0^1 (4x-5x^2+x^4)~dx}\\
 
&&\\
 
& = & \displaystyle{\pi\bigg(2x^2-\frac{5x^3}{3}+\frac{x^5}{5}\bigg)\bigg|_0^1}\\
 
&&\\
 
& = & \displaystyle{\pi\bigg(2-\frac{5}{3}+\frac{1}{5}\bigg)-0}\\
 
&&\\
 
& = & \displaystyle{\frac{8\pi}{15}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{8\pi}{15}</math>
 
|}
 
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 17:26, 2 December 2017

Find the volume of the solid obtained by rotating the region bounded by the curves    and    about the line  


Solution


Detailed Solution


Return to Sample Exam