Difference between revisions of "009A Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
Line 10: Line 10:
  
 
<span class="exam">(d) Sketch the shape of the graph of &nbsp;<math style="vertical-align: -4px">f.</math>
 
<span class="exam">(d) Sketch the shape of the graph of &nbsp;<math style="vertical-align: -4px">f.</math>
 +
<hr>
 +
[[009A Sample Final 3, Problem 6 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing when &nbsp;<math style="vertical-align: -5px">f'(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is decreasing when &nbsp;<math style="vertical-align: -5px">f'(x)<0.</math>
 
|-
 
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|-
 
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up when &nbsp;<math style="vertical-align: -5px">f''(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave down when &nbsp;<math style="vertical-align: -5px">f''(x)<0.</math>
 
|}
 
  
 +
[[009A Sample Final 3, Problem 6 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by taking the derivative of &nbsp;<math style="vertical-align: -5px">f(x).</math>&nbsp;
 
|-
 
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=24x^2-4x^3.</math>
 
|-
 
|Now, we set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>&nbsp; So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -6px">0=4x^2(6-x).</math>
 
|-
 
|Hence, we have &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">x=6.</math>
 
|-
 
|So, these values of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; break up the number line into 3 intervals:
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,6),(6,\infty).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|To check whether the function is increasing or decreasing in these intervals, we use testpoints.
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=-1,~f'(x)=28>0.</math>
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=1,~f'(x)=20>0.</math>
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=7,~f'(x)=-196<0.</math>
 
|-
 
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|The critical points of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; occur at &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=6.</math>
 
|-
 
|Plugging these values into &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we get the critical points
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(6,436).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Using the first derivative test and the information from part (a),
 
|-
 
|&nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and
 
|-
 
|&nbsp;<math style="vertical-align: -4px">(6,436)</math>&nbsp; is a local maximum.
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To find the intervals when the function is concave up or concave down, we need to find &nbsp;<math style="vertical-align: -5px">f''(x).</math>
 
|-
 
|We have &nbsp;<math style="vertical-align: -5px">f''(x)=48x-12x^2.</math>
 
|-
 
|We set &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|-
 
|So, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">0=12x(4-x).</math>&nbsp;
 
|-
 
|Hence, &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">x=4</math>.
 
|-
 
|This value breaks up the number line into three intervals:
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,0),(0,4),(4,\infty).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Again, we use test points in these three intervals.
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=-1,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=-60<0.</math>
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=1,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=48>0.</math>
 
|-
 
|For &nbsp;<math style="vertical-align: -5px">x=5,</math>&nbsp; we have &nbsp;<math style="vertical-align: -5px">f''(x)=-60<0.</math>
 
|-
 
|Thus, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(0,4)</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty).</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!(d): &nbsp;
 
|-
 
|Insert graph
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing on &nbsp;<math style="vertical-align: -5px">(-\infty,6)</math>&nbsp; and decreasing on &nbsp;<math style="vertical-align: -5px">(6,\infty).</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; The critical points are <math style="vertical-align: -4px">(0,4)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(6,436).</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -4px">(0,4)</math>&nbsp; is not a local minimum or local maximum and &nbsp;<math style="vertical-align: -5px">(6,436)</math>&nbsp; is a local maximum.
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up on the interval &nbsp;<math style="vertical-align: -5px">(0,4)</math>&nbsp; and concave down on the interval &nbsp;<math style="vertical-align: -5px">(-\infty,0)\cup (4,\infty).</math>
 
|-
 
|&nbsp; &nbsp;'''(d)'''&nbsp; &nbsp; See above
 
|}
 
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:42, 2 December 2017

Let

(a) Over what  -intervals is    increasing/decreasing?

(b) Find all critical points of    and test each for local maximum and local minimum.

(c) Over what  -intervals is    concave up/down?

(d) Sketch the shape of the graph of  


Solution


Detailed Solution


Return to Sample Exam