Difference between revisions of "009A Sample Final 1, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
<span class="exam">Consider the following continuous function:
+
<span class="exam">If a resistor of &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; ohms is connected across a battery of &nbsp;<math style="vertical-align: 0px">E</math>&nbsp; volts with internal resistance &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; ohms, then the power (in watts) in the external resistor is
::<math>f(x)=x^{1/3}(x-8)</math>
 
  
<span class="exam">defined on the closed, bounded interval &nbsp;<math style="vertical-align: -5px">[-8,8]</math>.
+
::<math>P=\frac{E^2R}{(R+r)^2}.</math>
  
<span class="exam">(a) Find all the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>.
+
<span class="exam">If &nbsp;<math style="vertical-align: 0px">E</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">r</math>&nbsp; are fixed but &nbsp;<math style="vertical-align: 0px">R</math>&nbsp; varies, what is the maximum value of the power?
  
<span class="exam">(b) Determine the absolute maximum and absolute minimum values for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on the interval &nbsp;<math style="vertical-align: -5px">[-8,8]</math>.
+
<hr>
 +
[[009A Sample Final 1, Problem 10 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' To find the critical points for &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp; we set &nbsp;<math style="vertical-align: -5px">f'(x)=0</math>&nbsp; and solve for &nbsp;<math style="vertical-align: -1px">x.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Also, we include the values of &nbsp;<math style="vertical-align: -1px">x</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined.
 
|-
 
|'''2.''' To find the absolute maximum and minimum of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; on an interval &nbsp;<math>[a,b],</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; we need to compare the &nbsp;<math style="vertical-align: -5px">y</math>&nbsp; values of our critical points with &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b).</math>
 
|}
 
  
 +
[[009A Sample Final 1, Problem 10 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|To find the critical points, first we need to find &nbsp;<math style="vertical-align: -5px">f'(x).</math>
 
|-
 
|Using the Product Rule, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{3}x^{-\frac{2}{3}}(x-8)+x^{\frac{1}{3}}}\\
 
&&\\
 
& = & \displaystyle{\frac{x-8}{3x^{\frac{2}{3}}}+x^{\frac{1}{3}}.}\\
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Notice &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; is undefined when &nbsp;<math style="vertical-align: -1px">x=0.</math>
 
|-
 
|Now, we need to set &nbsp;<math style="vertical-align: -5px">f'(x)=0.</math>
 
|-
 
|So, we get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>-x^{\frac{1}{3}}\,=\,\frac{x-8}{3x^{\frac{2}{3}}}.</math>
 
|-
 
|We cross multiply to get &nbsp;<math style="vertical-align: 1px">-3x=x-8.</math>
 
|-
 
|Solving, we get &nbsp;<math style="vertical-align: -1px">x=2.</math>
 
|-
 
|Thus, the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; are &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6)).</math>
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We need to compare the values of &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the critical points and at the endpoints of the interval.
 
|-
 
|Using the equation given, we have &nbsp;<math style="vertical-align: -5px">f(-8)=32</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(8)=0.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Comparing the values in Step 1 with the critical points in (a), the absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">32</math>
 
|-
 
|and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)'''&nbsp; &nbsp; <math style="vertical-align: -4px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">(2,2^{\frac{1}{3}}(-6))</math>
 
|-
 
|&nbsp; &nbsp; '''(b)'''&nbsp; &nbsp; The absolute maximum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">32</math>&nbsp; and the absolute minimum value for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is &nbsp;<math style="vertical-align: -5px">2^{\frac{1}{3}}(-6).</math>
 
|}
 
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:17, 2 December 2017

If a resistor of    ohms is connected across a battery of    volts with internal resistance    ohms, then the power (in watts) in the external resistor is

If    and    are fixed but    varies, what is the maximum value of the power?


Solution


Detailed Solution


Return to Sample Exam