Difference between revisions of "009A Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
(Replaced content with "<span class="exam"> Show that the equation  <math style="vertical-align: -2px">x^3+2x-2=0</math>  has exactly one real root. <hr> 009A Sample Final 2, Problem...")
 
Line 1: Line 1:
 
<span class="exam"> Show that the equation &nbsp;<math style="vertical-align: -2px">x^3+2x-2=0</math>&nbsp; has exactly one real root.
 
<span class="exam"> Show that the equation &nbsp;<math style="vertical-align: -2px">x^3+2x-2=0</math>&nbsp; has exactly one real root.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 2, Problem 7 Solution|'''<u>Solution</u>''']]
|-
 
|'''1.''' '''Intermediate Value Theorem'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on a closed interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is any number
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;between &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b),</math>&nbsp; then there is at least one number &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the closed interval such that &nbsp;<math style="vertical-align: -5px">f(x)=c.</math>
 
|-
 
|'''2.'''  '''Mean Value Theorem'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a function that satisfies the following:
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on the closed interval &nbsp;<math style="vertical-align: -5px">[a,b].</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is differentiable on the open interval &nbsp;<math style="vertical-align: -5px">(a,b).</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;Then, there is a number &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; such that &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 2, Problem 7 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we note that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=-2.</math>
 
|-
 
|Also,
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(1)=1.</math>
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">f(0)<0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(1)>0,</math>&nbsp;
 
|-
 
|there exists &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; with &nbsp;<math style="vertical-align: -1px">0<x<1</math>&nbsp; such that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)=0</math>&nbsp;
 
|-
 
|by the Intermediate Value Theorem.
 
|-
 
|Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero.
 
|-
 
|So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; such that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 
|-
 
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 
|-
 
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+2.</math>&nbsp;
 
|-
 
|Since &nbsp;<math style="vertical-align: -5px">x^2\ge 0,</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px"> f'(x) \ge 2.</math>
 
|-
 
|Therefore, it is impossible for &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; See solution above.
 
|}
 
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:21, 1 December 2017

Show that the equation    has exactly one real root.


Solution


Detailed Solution


Return to Sample Exam