Difference between revisions of "009A Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam"> A lighthouse is located on a small island 3km away from the nearest point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from &nbsp;<math style="vertical-align: 0px">P?</math>
 
<span class="exam"> A lighthouse is located on a small island 3km away from the nearest point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from &nbsp;<math style="vertical-align: 0px">P?</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
+
[[009A Sample Final 2, Problem 5 Solution|'''<u>Solution</u>''']]
|-
 
|When we see a problem talking about rates, it is usually a '''related rates''' problem.
 
|-
 
|Thus, we treat everything as a function of time, or &nbsp;<math style="vertical-align: -1px">t.</math>  
 
|-
 
|We can usually find an equation relating one unknown to another, and then use implicit differentiation.
 
|-
 
|Since the problem usually gives us one rate, and from the given info we can usually find the values of
 
variables at our particular moment in time, we can solve the equation
 
for the remaining rate.
 
|}
 
  
  
'''Solution:'''
+
[[009A Sample Final 2, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We can begin this physical word problem by drawing a picture.
 
|-
 
|[[File:009A_SF2_5_GP.png|center|325px]]
 
|-
 
|In the picture, we can consider the distance from the point &nbsp;<math style="vertical-align: 0px">P</math>&nbsp; to the spot the light hits the shore to be the variable &nbsp;<math style="vertical-align: 0px">x.</math>
 
|-
 
|By drawing a right triangle with the beam as its hypotenuse, we can see that our variable
 
&nbsp;<math style="vertical-align: 0px">x</math>&nbsp; is related to the angle &nbsp;<math style="vertical-align: 0px">\theta</math>&nbsp; by the equation
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>{\displaystyle \tan\theta\ =\ \frac{\textrm{side~opp.}}{\textrm{side~adj. }}\ =\ \frac{x}{3}.}</math>
 
|-
 
|This gives us a relation between the two variables.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we use implicit differentiation to find
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>{\displaystyle \sec^{2}\theta\cdot\frac{d\theta}{dt}\ =\ \frac{1}{3}\cdot\frac{dx}{dt}.}</math>
 
|-
 
|Rearranging, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>{\displaystyle \frac{dx}{dt}\ =\ 3\sec^{2}\theta\cdot\frac{d\theta}{dt}.}</math>
 
|-
 
|Again, everything is a function of time.
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|We want to know the rate that the beam is moving along the shore when
 
we are one km away from the point &nbsp;<math style="vertical-align: 0px">P.</math>
 
|-
 
|This tells us that &nbsp;<math style="vertical-align: -1px">x=1.</math>
 
|-
 
|The problem also tells us that the lighthouse beam is revolving at 4 revolutions
 
per minute.
 
|-
 
|However, &nbsp;<math style="vertical-align: 0px">\theta</math>&nbsp; is measured in radians, and there are &nbsp;<math style="vertical-align: 0px">2\pi</math>&nbsp; radians in a revolution.
 
|-
 
|Thus, we know
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>{\displaystyle \frac{d\theta}{dt}\ =\ 4\cdot2\pi\ =\ 8\pi.}</math>
 
|-
 
|Finally, we require secant. Since we know &nbsp;<math style="vertical-align: -3px">x=1,</math>
 
|-
 
|we can solve the triangle to get that the length of the hypotenuse is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\sqrt{1^{2}+3^{2}}=\sqrt{10}.</math>
 
|-
 
|This means that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>{\displaystyle \sec\theta\ =\ \frac{1}{\cos\theta}\ =\ \frac{\textrm{hyp.}}{\textrm{side~adj.}}\ =\ \frac{\sqrt{10}}{3}.}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 4: &nbsp;
 
|-
 
|Now, we can plug in all these values to find
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\frac{dx}{dt}} & = & \displaystyle{3\sec^{2}\theta\cdot\frac{d\theta}{dt}}\\
 
&&\\
 
& = & \displaystyle{3\left(\frac{\sqrt{10}}{3}\right)^{2}(8\pi)}\\
 
&&\\
 
& = & \displaystyle{3\left(\frac{10}{3}\right)(8\pi)}\\
 
&&\\
 
& = & \displaystyle{80\pi\text{ km/min.}}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math>80\pi\text{ km/min}</math>
 
|}
 
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:16, 1 December 2017

A lighthouse is located on a small island 3km away from the nearest point    on a straight shoreline and its light makes 4 revolutions per minute. How fast is the beam of light moving along the shoreline on a point 1km away from  


Solution


Detailed Solution


Return to Sample Exam