Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
Line 15: Line 15:
  
  
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''1.''' Integration by parts tells us that
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|'''2.''' How would you integrate &nbsp;<math style="vertical-align: -12px">\int x\ln x~dx?</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; You could use integration by parts.
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=x~dx.</math>
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int x\ln x~dx} & = & \displaystyle{\frac{x^2\ln x}{2}-\int \frac{x}{2}~dx}\\
 
&&\\
 
& = & \displaystyle{\frac{x^2\ln x}{2}-\frac{x^2}{4}+C.}
 
\end{array}</math>
 
|}
 
 
 
'''Solution:'''
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using integration by parts.
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">u=x^2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">du=2xdx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|Therefore, we have
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -12px">\int x^2 e^x~dx=x^2e^x-\int 2xe^x~dx.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we need to use integration by parts again.
 
|-
 
|Let &nbsp;<math style="vertical-align: 0px">u=2x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=e^xdx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: 0px">du=2dx</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|Building on the previous step, we have
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int x^2 e^x~dx} & = & \displaystyle{x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)}\\
 
&&\\
 
& = & \displaystyle{x^2e^x-2xe^x+2e^x+C.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We proceed using integration by parts.
 
|-
 
|Let &nbsp;<math style="vertical-align: -1px">u=\ln x</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">dv=x^3dx.</math>
 
|-
 
|Then, &nbsp;<math style="vertical-align: -13px">du=\frac{1}{x}dx</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
 
|-
 
|Therefore, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx}\\
 
&&\\
 
& = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we evaluate to get
 
|-
 
| &nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)}\\
 
&&\\
 
& = & \displaystyle{\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}}\\
 
&&\\
 
& = & \displaystyle{\frac{3e^4+1}{16}.}
 
\end{array}</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>x^2e^x-2xe^x+2e^x+C</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3e^4+1}{16}</math>
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:27, 20 November 2017

A population grows at a rate

where    is the population after    months.

(a)   Find a formula for the population size after    months, given that the population is    at  

(b)   Use your answer to part (a) to find the size of the population after one month.


Solution


Detailed Solution


Return to Sample Exam