|
|
| Line 6: |
Line 6: |
| | | | |
| | <span class="exam">(c) <math style="vertical-align: -18px">h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} </math> | | <span class="exam">(c) <math style="vertical-align: -18px">h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} </math> |
| | + | <hr> |
| | | | |
| | + | (insert picture of handwritten solution) |
| | | | |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| + | [[009A Sample Midterm 2, Problem 5 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']] |
| − | !Foundations:
| |
| − | |-
| |
| − | |'''1.''' '''Chain Rule'''
| |
| − | |-
| |
| − | | <math>\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)</math>
| |
| − | |-
| |
| − | |'''2.''' '''Trig Derivatives'''
| |
| − | |-
| |
| − | | <math>\frac{d}{dx}(\sin x)=\cos x,\quad\frac{d}{dx}(\cos x)=-\sin x</math>
| |
| − | |-
| |
| − | |'''3.''' '''Quotient Rule''' | |
| − | |-
| |
| − | | <math>\frac{d}{dx}\bigg(\frac{f(x)}{g(x)}\bigg)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}</math>
| |
| − | |-
| |
| − | |'''4.''' '''Derivative of natural logarithm
| |
| − | |-
| |
| − | | <math>\frac{d}{dx}(\ln x)=\frac{1}{x}</math>
| |
| − | |}
| |
| | | | |
| − |
| |
| − | '''Solution:'''
| |
| − |
| |
| − | '''(a)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we use the Chain Rule to get
| |
| − | |-
| |
| − | | <math>f'(x)=3\tan^2(7x^2+5)(\tan(7x^2+5))'.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we use the Chain Rule again to get
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{f'(x)} & = & \displaystyle{3\tan^2(7x^2+5)(\tan(7x^2+5))'}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(7x^2+5)'}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x).}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(b)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we use the Chain Rule to get
| |
| − | |-
| |
| − | | <math>g'(x)=\cos(\cos(e^x))(\cos(e^x))'.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we use the Chain Rule again to get
| |
| − | |-
| |
| − | |
| |
| − | <math>\begin{array}{rcl}
| |
| − | \displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − | '''(c)'''
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 1:
| |
| − | |-
| |
| − | |First, we use the Quotient Rule to get
| |
| − | |-
| |
| − | | <math>h'(x)=\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}.</math>
| |
| − | |}
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Step 2:
| |
| − | |-
| |
| − | |Now, we use the Chain Rule to get
| |
| − | |-
| |
| − | | <math>\begin{array}{rcl}
| |
| − | \displaystyle{h'(x)} & = & \displaystyle{\frac{\ln(x^2+1)((5x^2+7x)^2)'-(5x^2+7x)^2(\ln(x^2+1))'}{(\ln(x^2+1))^2}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(5x^2+7x)'-(5x^2+7x)^2\frac{1}{x^2+1}(x^2+1)'}{(\ln(x^2+1))^2}}\\
| |
| − | &&\\
| |
| − | & = & \displaystyle{\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}.}
| |
| − | \end{array}</math>
| |
| − | |}
| |
| − |
| |
| − |
| |
| − | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"
| |
| − | !Final Answer:
| |
| − | |-
| |
| − | | '''(a)''' <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>
| |
| − | |-
| |
| − | | '''(b)''' <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
| |
| − | |-
| |
| − | | '''(c)''' <math>\frac{\ln(x^2+1)2(5x^2+7x)(10x+7)-(5x^2+7x)^2\frac{1}{x^2+1}(2x)}{(\ln(x^2+1))^2}</math>
| |
| − | |}
| |
| | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Find the derivatives of the following functions. Do not simplify.
(a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\tan^3(7x^2+5) }
(b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\sin(\cos(e^x)) }
(c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }
(insert picture of handwritten solution)
Detailed Solution for this Problem
Return to Sample Exam