Difference between revisions of "009A Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
  
 
== [[009A_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
== [[009A_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">Consider the following function &nbsp;<math style="vertical-align: -5px"> f:</math>
 +
::<math>f(x) = \left\{
 +
    \begin{array}{lr}
 +
      x^2 &  \text{if }x < 1\\
 +
      \sqrt{x} & \text{if }x \geq 1
 +
    \end{array}
 +
  \right.
 +
</math>
  
<span class="exam">(a) Use the definition of the derivative to compute &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
  
<span class="exam">(b) Find the equation of the tangent line to &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
+
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
 +
 
 +
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
 +
 
 +
<span class="exam">(d) Is &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; continuous at &nbsp;<math style="vertical-align: -1px">x=1?</math>&nbsp; Briefly explain.
  
 
== [[009A_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009A_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==

Revision as of 06:50, 3 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9A for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Find the following limits:

(a) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 2} g(x),}   provided that  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5.}

(b) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} }

(c) Evaluate  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim _{x\rightarrow -3^+} \frac{x}{x^2-9} }

 Problem 2 

text

 Problem 3 

Consider the following function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left\{ \begin{array}{lr} x^2 & \text{if }x < 1\\ \sqrt{x} & \text{if }x \geq 1 \end{array} \right. }

(a) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1^-} f(x).}

(b) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1^+} f(x).}

(c) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} f(x).}

(d) Is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   continuous at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1?}   Briefly explain.

 Problem 4 

Let  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{3x-5}.}

(a) Use the definition of the derivative to compute   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{dy}{dx}}   for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{3x-5}.}

(b) Find the equation of the tangent line to  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y=\sqrt{3x-5}}   at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (2,1).}

 Problem 5 

Find the derivatives of the following functions. Do not simplify.

(a)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=\sqrt{x}(x^2+2)}

(b)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0}

(c)   Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}}