Difference between revisions of "Strategies for Testing Series"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
'''1.''' If the series is of the form  
 
'''1.''' If the series is of the form  
  
::<math style="vertical-align: -10px">\sum \frac{1}{n^p} </math>&nbsp; or &nbsp;<math style="vertical-align: -5px">\sum ar^n,</math>&nbsp;  
+
:::<math style="vertical-align: -10px">\sum \frac{1}{n^p} </math>&nbsp; or &nbsp;<math style="vertical-align: -5px">\sum ar^n,</math>&nbsp;  
  
then the series is a &nbsp;<math style="vertical-align: -4px">p-</math>series or a geometric series
+
:then the series is a &nbsp;<math style="vertical-align: -4px">p-</math>series or a geometric series
  
For the &nbsp;<math style="vertical-align: -4px">p-</math>series  
+
:For the &nbsp;<math style="vertical-align: -4px">p-</math>series  
  
::<math>\sum \frac{1}{n^p},</math>&nbsp;  
+
:::<math>\sum \frac{1}{n^p},</math>&nbsp;  
  
it is convergent if &nbsp;<math style="vertical-align: -4px">p>1</math>&nbsp; and divergent if &nbsp;<math style="vertical-align: -4px">p\le 1.</math>
+
:it is convergent if &nbsp;<math style="vertical-align: -4px">p>1</math>&nbsp; and divergent if &nbsp;<math style="vertical-align: -4px">p\le 1.</math>
  
For the geometric series  
+
:For the geometric series  
  
::<math>\sum ar^n,</math>&nbsp;  
+
:::<math>\sum ar^n,</math>&nbsp;  
  
it is convergent if &nbsp;<math style="vertical-align: -5px">|r|<1</math>&nbsp; and divergent if &nbsp;<math style="vertical-align: -4px">|r|\ge 1.</math>
+
:it is convergent if &nbsp;<math style="vertical-align: -5px">|r|<1</math>&nbsp; and divergent if &nbsp;<math style="vertical-align: -4px">|r|\ge 1.</math>
  
'''2.''' If the series has a form similar to a &nbsp;<math style="vertical-align: -4px">p-</math>series or a geometric series, then one of the comparison tests should be considered.
+
'''2.''' If the series has a form similar to a &nbsp;<math style="vertical-align: -4px">p-</math>series or a geometric series,  
 +
 
 +
:then one of the comparison tests should be considered.
  
 
'''3.''' If you can see that  
 
'''3.''' If you can see that  
  
::<math>\lim_{n\rightarrow \infty} a_n \neq 0,</math>&nbsp;  
+
:::<math>\lim_{n\rightarrow \infty} a_n \neq 0,</math>&nbsp;  
  
then you should use the Divergence Test or &nbsp;<math style="vertical-align: 0px">n</math>th term test.
+
:then you should use the Divergence Test or &nbsp;<math style="vertical-align: 0px">n</math>th term test.
  
 
'''4.''' If the series has the form  
 
'''4.''' If the series has the form  
  
::<math style="vertical-align: -6px">\sum (-1)^n b_n</math>&nbsp; or &nbsp;<math style="vertical-align: -6px">\sum (-1)^{n-1} b_n</math>&nbsp;  
+
:::<math style="vertical-align: -6px">\sum (-1)^n b_n</math>&nbsp; or &nbsp;<math style="vertical-align: -6px">\sum (-1)^{n-1} b_n</math>&nbsp;  
  
with &nbsp;<math style="vertical-align: -4px">b_n>0</math>&nbsp; for all &nbsp;<math style="vertical-align: -4px">n,</math>&nbsp; then the Alternating Series Test should be considered.
+
:with &nbsp;<math style="vertical-align: -4px">b_n>0</math>&nbsp; for all &nbsp;<math style="vertical-align: -4px">n,</math>&nbsp; then the Alternating Series Test should be considered.
  
'''5.''' If the series involves factorials or other products (including constants raised to the &nbsp;<math style="vertical-align: 0px">n</math>th power), the Ratio Test should be considered.
+
'''5.''' If the series involves factorials or other products,  
  
<u>NOTE:</u> The Ratio Test should not be used for rational functions of &nbsp;<math style="vertical-align: 0px">n.</math>
+
:the Ratio Test should be considered.
 +
 
 +
:<u>NOTE:</u> The Ratio Test should not be used for rational functions of &nbsp;<math style="vertical-align: 0px">n.</math>&nbsp;
 +
 
 +
:For rational functions, you should use the Limit Comparison Test.
  
 
'''6.''' If &nbsp;<math style="vertical-align: -5px">a_n=f(n)</math>&nbsp; for some function &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; where  
 
'''6.''' If &nbsp;<math style="vertical-align: -5px">a_n=f(n)</math>&nbsp; for some function &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; where  
  
::<math>\int_a^\infty f(x)~dx</math>&nbsp;  
+
:::<math>\int_a^\infty f(x)~dx</math>&nbsp;
 +
 
 +
:is easily evaluated, the Integral Test should be considered.
 +
 
 +
'''7.''' If all of the terms in the series have powers involving &nbsp;<math style="vertical-align: -4px">n,</math>&nbsp;  
  
is easily evaluated, the Integral Test should be considered (if all the hypothesis of the Integral Test are satisfied).  
+
:then the Root Test should be considered.
  
 
<u>NOTE:</u> These strategies are used for determining whether a series converges or diverges.  
 
<u>NOTE:</u> These strategies are used for determining whether a series converges or diverges.  

Revision as of 11:46, 30 October 2017

In general, there are no specific rules as to which test to apply to a given series.

Instead, we classify series by their form and give tips as to which tests should be considered.

This list is meant to serve as a guideline for which tests you should consider applying to a given series.

1. If the series is of the form

  or   
then the series is a  series or a geometric series
For the  series
 
it is convergent if    and divergent if  
For the geometric series
 
it is convergent if    and divergent if  

2. If the series has a form similar to a  series or a geometric series,

then one of the comparison tests should be considered.

3. If you can see that

 
then you should use the Divergence Test or  th term test.

4. If the series has the form

  or   
with    for all    then the Alternating Series Test should be considered.

5. If the series involves factorials or other products,

the Ratio Test should be considered.
NOTE: The Ratio Test should not be used for rational functions of   
For rational functions, you should use the Limit Comparison Test.

6. If    for some function    where

 
is easily evaluated, the Integral Test should be considered.

7. If all of the terms in the series have powers involving   

then the Root Test should be considered.

NOTE: These strategies are used for determining whether a series converges or diverges.

However, these are not the strategies one should use if we are determining whether or not a

series is absolutely convergent.