Difference between revisions of "Integration by Parts"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "text")
 
Line 1: Line 1:
text
+
==Introduction==
 +
Let's say we want to integrate
 +
 
 +
::<math>\int x^2e^{x^3}~dx.</math>
 +
 
 +
Here, we can compute this antiderivative by using &nbsp;<math>u-</math>substitution.
 +
 
 +
While &nbsp;<math>u-</math> is an important integration technique, it will not help us evaluate all integrals.
 +
 
 +
For example, consider the integral &nbsp;<math>\int xe^x~dx.</math>
 +
 
 +
There is no substitution that will allow us to integrate this integral.
 +
 
 +
We need another integration technique called integration by parts.
 +
 
 +
The formula for integration by parts comes from the product rule for derivatives.
 +
 
 +
Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule.
 +
 
 +
For example, if &nbsp;<math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math>&nbsp; then &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math>
 +
 
 +
But, what about more <em>complicated functions</em>?
 +
 
 +
For example, what is &nbsp;<math style="vertical-align: -5px">f'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -5px">f(x)=\sin x \cos x?</math>
 +
 
 +
Or what about &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; when &nbsp;<math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math>
 +
 
 +
Notice &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a product, and &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
 +
 
 +
'''Product Rule'''
 +
 
 +
Let &nbsp;<math style="vertical-align: -5px">h(x)=f(x)g(x).</math>&nbsp; Then,
 +
 
 +
::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math>
 +
 
 +
'''Quotient Rule'''
 +
 
 +
Let &nbsp;<math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math>&nbsp; Then,
 +
 
 +
::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math>
 +
 
 +
==Warm-Up==
 +
Calculate &nbsp;<math style="vertical-align: -5px">f'(x).</math>
 +
 
 +
'''1)''' &nbsp; <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math>
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Using the Product Rule, we have
 +
|-
 +
|
 +
::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math>
 +
|-
 +
|Then, using the Power Rule, we have
 +
|-
 +
|
 +
::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math>
 +
|-
 +
|-
 +
|<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function.
 +
|-
 +
|You can distribute the terms and then use the Power Rule.
 +
|-
 +
|In this case, we have
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\
 +
&&\\
 +
& = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\
 +
&&\\
 +
& = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\
 +
&&\\
 +
& = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.}
 +
\end{array}</math>
 +
|-
 +
|Now, using the Power Rule, we get
 +
|-
 +
|
 +
::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math>
 +
|-
 +
|In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
 +
|}
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math>
 +
|-
 +
|or equivalently
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math>
 +
|}
 +
 
 +
'''2)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math>
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|
 +
Using the Quotient Rule, we have
 +
|-
 +
|
 +
::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math>
 +
|-
 +
|Then, using the Power Rule, we have
 +
|-
 +
|
 +
::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math>
 +
|-
 +
|<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function.
 +
|-
 +
|You can divide and then use the Power Rule.
 +
|-
 +
|In this case, we have
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\
 +
&&\\
 +
& = & \displaystyle{x+x^2.} \\
 +
\end{array}</math>
 +
|-
 +
|Now, using the Power Rule, we get
 +
|-
 +
|
 +
::<math>f'(x)=1+2x.</math>
 +
|}
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
||&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math>
 +
|-
 +
|or equivalently
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=1+2x</math>
 +
 
 +
|-
 +
|}
 +
 
 +
'''3)''' &nbsp; <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math>
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Solution: &nbsp;
 +
|-
 +
|Using the Quotient Rule, we get
 +
|-
 +
|
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{\cos^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\sec^2 x}
 +
\end{array}</math>
 +
|-
 +
|since &nbsp;<math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math>&nbsp; we have
 +
|-
 +
|
 +
::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math>
 +
|}
 +
 
 +
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Final Answer: &nbsp;
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f'(x)=\sec^2 x</math>
 +
|-
 +
|}
 +
 
 +
== Exercise 1 ==
 +
 
 +
Calculate the derivative of &nbsp;<math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math>
 +
 
 +
First, we need to know the derivative of &nbsp;<math style="vertical-align: 0px">\csc x.</math>&nbsp; Recall
 +
 
 +
::<math>\csc x =\frac{1}{\sin x}.</math>
 +
 
 +
Now, using the Quotient Rule, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\
 +
&&\\
 +
& = & \displaystyle{-\csc x \cot x.}
 +
\end{array}</math>
 +
 
 +
Using the Product Rule and Power Rule, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.}
 +
\end{array}</math>
 +
 
 +
So, we have
 +
::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math>
 +
 
 +
== Exercise 2 ==
 +
 
 +
Calculate the derivative of &nbsp;<math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math>
 +
 
 +
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.
 +
 
 +
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
 +
 
 +
Using the Product Rule, we get
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
 +
&&\\
 +
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
 +
\end{array}</math>
 +
 
 +
Now, we need to use the Product Rule again. So,
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
 +
&&\\
 +
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
 +
\end{array}</math>
 +
 
 +
So, we have
 +
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
 +
 
 +
But, there is another way to do this problem. Notice
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
 +
&&\\
 +
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
 +
&&\\
 +
& = & \displaystyle{2x\tan x.}
 +
\end{array}</math>
 +
 
 +
Now, you would only need to use the Product Rule once instead of twice.
 +
 
 +
== Exercise 3 ==
 +
 
 +
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
 +
 
 +
Using the Quotient Rule, we have
 +
 
 +
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
 +
 
 +
Now, we need to use the Product Rule. So, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
 +
\end{array}</math>
 +
 
 +
So, we get
 +
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
 +
 
 +
== Exercise 4 ==
 +
 
 +
Calculate the derivative of  &nbsp;<math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math>
 +
 
 +
First, using the Quotient Rule, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
 +
\end{array}</math>
 +
 
 +
Now, we need to use the Product Rule. So, we have
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
 +
\end{array}</math>
 +
 
 +
So, we have
 +
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>

Revision as of 10:38, 26 October 2017

Introduction

Let's say we want to integrate

Here, we can compute this antiderivative by using  substitution.

While   is an important integration technique, it will not help us evaluate all integrals.

For example, consider the integral  

There is no substitution that will allow us to integrate this integral.

We need another integration technique called integration by parts.

The formula for integration by parts comes from the product rule for derivatives.

Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.

For example, if    then  

But, what about more complicated functions?

For example, what is    when  

Or what about    when  

Notice    is a product, and    is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.

Product Rule

Let    Then,

Quotient Rule

Let    Then,

Warm-Up

Calculate  

1)  

Solution:  
Using the Product Rule, we have
Then, using the Power Rule, we have
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function.
You can distribute the terms and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule.
Final Answer:  
       
or equivalently
       

2)  

Solution:  

Using the Quotient Rule, we have

Then, using the Power Rule, we have
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function.
You can divide and then use the Power Rule.
In this case, we have
Now, using the Power Rule, we get
Final Answer:  
       
or equivalently
       

3)  

Solution:  
Using the Quotient Rule, we get
since    and  
Since    we have
Final Answer:  
       

Exercise 1

Calculate the derivative of  

First, we need to know the derivative of    Recall

Now, using the Quotient Rule, we have

Using the Product Rule and Power Rule, we have

So, we have

Exercise 2

Calculate the derivative of  

Notice that the function    is the product of three functions.

We start by grouping two of the functions together. So, we have  

Using the Product Rule, we get

Now, we need to use the Product Rule again. So,

So, we have

But, there is another way to do this problem. Notice

Now, you would only need to use the Product Rule once instead of twice.

Exercise 3

Calculate the derivative of  

Using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we get

Exercise 4

Calculate the derivative of  

First, using the Quotient Rule, we have

Now, we need to use the Product Rule. So, we have

So, we have