Difference between revisions of "Integration by Parts"
Kayla Murray (talk | contribs) (Created page with "text") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | text | + | ==Introduction== |
+ | Let's say we want to integrate | ||
+ | |||
+ | ::<math>\int x^2e^{x^3}~dx.</math> | ||
+ | |||
+ | Here, we can compute this antiderivative by using <math>u-</math>substitution. | ||
+ | |||
+ | While <math>u-</math> is an important integration technique, it will not help us evaluate all integrals. | ||
+ | |||
+ | For example, consider the integral <math>\int xe^x~dx.</math> | ||
+ | |||
+ | There is no substitution that will allow us to integrate this integral. | ||
+ | |||
+ | We need another integration technique called integration by parts. | ||
+ | |||
+ | The formula for integration by parts comes from the product rule for derivatives. | ||
+ | |||
+ | Taking the derivatives of <em>simple functions</em> (i.e. polynomials) is easy using the power rule. | ||
+ | |||
+ | For example, if <math style="vertical-align: -5px">f(x)=x^3+2x^2+5x+3,</math> then <math style="vertical-align: -5px">f'(x)=3x^2+4x+5.</math> | ||
+ | |||
+ | But, what about more <em>complicated functions</em>? | ||
+ | |||
+ | For example, what is <math style="vertical-align: -5px">f'(x)</math> when <math style="vertical-align: -5px">f(x)=\sin x \cos x?</math> | ||
+ | |||
+ | Or what about <math style="vertical-align: -5px">g'(x)</math> when <math style="vertical-align: -15px">g(x)=\frac{x}{x+1}?</math> | ||
+ | |||
+ | Notice <math style="vertical-align: -5px">f(x)</math> is a product, and <math style="vertical-align: -5px">g(x)</math> is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives. | ||
+ | |||
+ | '''Product Rule''' | ||
+ | |||
+ | Let <math style="vertical-align: -5px">h(x)=f(x)g(x).</math> Then, | ||
+ | |||
+ | ::<math>h'(x)=f(x)g'(x)+f'(x)g(x).</math> | ||
+ | |||
+ | '''Quotient Rule''' | ||
+ | |||
+ | Let <math style="vertical-align: -19px">h(x)=\frac{f(x)}{g(x)}.</math> Then, | ||
+ | |||
+ | ::<math>h'(x)=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}.</math> | ||
+ | |||
+ | ==Warm-Up== | ||
+ | Calculate <math style="vertical-align: -5px">f'(x).</math> | ||
+ | |||
+ | '''1)''' <math style="vertical-align: -7px">f(x)=(x^2+x+1)(x^3+2x^2+4)</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Using the Product Rule, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=(x^2+x+1)(x^3+2x^2+4)'+(x^2+x+1)'(x^3+2x^2+4).</math> | ||
+ | |- | ||
+ | |Then, using the Power Rule, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4).</math> | ||
+ | |- | ||
+ | |- | ||
+ | |<u>NOTE:</u> It is not necessary to use the Product Rule to calculate the derivative of this function. | ||
+ | |- | ||
+ | |You can distribute the terms and then use the Power Rule. | ||
+ | |- | ||
+ | |In this case, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f(x)} & = & \displaystyle{(x^2+x+1)(x^3+2x^2+4)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x^2(x^3+2x^2+4)+x(x^3+2x^2+4)+1(x^3+2x^2+4)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x^5+2x^4+4x^2+x^4+2x^3+4x+x^3+2x^2+4} \\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x^5+3x^4+3x^3+6x^2+4x+4.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, using the Power Rule, we get | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=5x^4+12x^3+9x^2+12x+4.</math> | ||
+ | |- | ||
+ | |In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
+ | |- | ||
+ | | <math>f'(x)=(x^2+x+1)(3x^2+4x)+(2x+1)(x^3+2x^2+4)</math> | ||
+ | |- | ||
+ | |or equivalently | ||
+ | |- | ||
+ | | <math>f'(x)=x^5+3x^4+3x^3+6x^2+4x+4</math> | ||
+ | |} | ||
+ | |||
+ | '''2)''' <math style="vertical-align: -14px">f(x)=\frac{x^2+x^3}{x}</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | | | ||
+ | Using the Quotient Rule, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=\frac{x(x^2+x^3)'-(x^2+x^3)(x)'}{x^2}.</math> | ||
+ | |- | ||
+ | |Then, using the Power Rule, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)(1)}{x^2}.</math> | ||
+ | |- | ||
+ | |<u>NOTE:</u> It is not necessary to use the Quotient Rule to calculate the derivative of this function. | ||
+ | |- | ||
+ | |You can divide and then use the Power Rule. | ||
+ | |- | ||
+ | |In this case, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f(x)} & = & \displaystyle{\frac{x^2+x^3}{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{x^2}{x}+\frac{x^3}{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x+x^2.} \\ | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, using the Power Rule, we get | ||
+ | |- | ||
+ | | | ||
+ | ::<math>f'(x)=1+2x.</math> | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
+ | |- | ||
+ | || <math>f'(x)=\frac{x(2x+3x^2)-(x^2+x^3)}{x^2}</math> | ||
+ | |- | ||
+ | |or equivalently | ||
+ | |- | ||
+ | | <math>f'(x)=1+2x</math> | ||
+ | |||
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''3)''' <math style="vertical-align: -14px">f(x)=\frac{\sin x}{\cos x}</math> | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Solution: | ||
+ | |- | ||
+ | |Using the Quotient Rule, we get | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{\cos x(\sin x)'-\sin x (\cos x)'}{(\cos x)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\cos x(\cos x)-\sin x (-\sin x)}{(\cos x)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\cos^2 x+\sin^2 x}{\cos^2 x}} \\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{\cos^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sec^2 x} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |since <math style="vertical-align: -2px">\sin^2 x+\cos^2 x=1</math> and <math style="vertical-align: -13px">\sec x=\frac{1}{\cos x}.</math> | ||
+ | |- | ||
+ | |Since <math style="vertical-align: -14px">\frac{\sin x}{\cos x}=\tan x,</math> we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\frac{d}{dx}{\tan x}=\sec^2 x.</math> | ||
+ | |} | ||
+ | |||
+ | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Final Answer: | ||
+ | |- | ||
+ | | <math>f'(x)=\sec^2 x</math> | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | == Exercise 1 == | ||
+ | |||
+ | Calculate the derivative of <math style="vertical-align: -13px">f(x)=\frac{1}{x^2}(\csc x-4).</math> | ||
+ | |||
+ | First, we need to know the derivative of <math style="vertical-align: 0px">\csc x.</math> Recall | ||
+ | |||
+ | ::<math>\csc x =\frac{1}{\sin x}.</math> | ||
+ | |||
+ | Now, using the Quotient Rule, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{\frac{d}{dx}(\csc x)} & = & \displaystyle{\frac{d}{dx}\bigg(\frac{1}{\sin x}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sin x (1)'-1(\sin x)'}{\sin^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sin x (0)-\cos x}{\sin^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-\cos x}{\sin^2 x}} \\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-\csc x \cot x.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | Using the Product Rule and Power Rule, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{1}{x^2}(\csc x-4)'+\bigg(\frac{1}{x^2}\bigg)'(\csc x-4)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{x^2}(-\csc x \cot x+0)+(-2x^{-3})(\csc x-4)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we have | ||
+ | ::<math>f'(x)=\frac{-\csc x \cot x}{x^2}+\frac{-2(\csc x-4)}{x^3}.</math> | ||
+ | |||
+ | == Exercise 2 == | ||
+ | |||
+ | Calculate the derivative of <math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math> | ||
+ | |||
+ | Notice that the function <math style="vertical-align: -5px">g(x)</math> is the product of three functions. | ||
+ | |||
+ | We start by grouping two of the functions together. So, we have <math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math> | ||
+ | |||
+ | Using the Product Rule, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | Now, we need to use the Product Rule again. So, | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we have | ||
+ | ::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math> | ||
+ | |||
+ | But, there is another way to do this problem. Notice | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2x\tan x.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | Now, you would only need to use the Product Rule once instead of twice. | ||
+ | |||
+ | == Exercise 3 == | ||
+ | |||
+ | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math> | ||
+ | |||
+ | Using the Quotient Rule, we have | ||
+ | |||
+ | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math> | ||
+ | |||
+ | Now, we need to use the Product Rule. So, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we get | ||
+ | ::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math> | ||
+ | |||
+ | == Exercise 4 == | ||
+ | |||
+ | Calculate the derivative of <math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math> | ||
+ | |||
+ | First, using the Quotient Rule, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | Now, we need to use the Product Rule. So, we have | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | So, we have | ||
+ | ::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math> |
Revision as of 10:38, 26 October 2017
Introduction
Let's say we want to integrate
Here, we can compute this antiderivative by using substitution.
While is an important integration technique, it will not help us evaluate all integrals.
For example, consider the integral
There is no substitution that will allow us to integrate this integral.
We need another integration technique called integration by parts.
The formula for integration by parts comes from the product rule for derivatives.
Taking the derivatives of simple functions (i.e. polynomials) is easy using the power rule.
For example, if then
But, what about more complicated functions?
For example, what is when
Or what about when
Notice is a product, and is a quotient. So, to answer the question of how to calculate these derivatives, we look to the Product Rule and the Quotient Rule. The Product Rule and the Quotient Rule give us formulas for calculating these derivatives.
Product Rule
Let Then,
Quotient Rule
Let Then,
Warm-Up
Calculate
1)
Solution: |
---|
Using the Product Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Product Rule to calculate the derivative of this function. |
You can distribute the terms and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
In general, calculating derivatives in this way is tedious. It would be better to use the Product Rule. |
Final Answer: |
---|
or equivalently |
2)
Solution: |
---|
Using the Quotient Rule, we have |
|
Then, using the Power Rule, we have |
|
NOTE: It is not necessary to use the Quotient Rule to calculate the derivative of this function. |
You can divide and then use the Power Rule. |
In this case, we have |
|
Now, using the Power Rule, we get |
|
Final Answer: |
---|
or equivalently |
3)
Solution: |
---|
Using the Quotient Rule, we get |
|
since and |
Since we have |
|
Final Answer: |
---|
Exercise 1
Calculate the derivative of
First, we need to know the derivative of Recall
Now, using the Quotient Rule, we have
Using the Product Rule and Power Rule, we have
So, we have
Exercise 2
Calculate the derivative of
Notice that the function is the product of three functions.
We start by grouping two of the functions together. So, we have
Using the Product Rule, we get
Now, we need to use the Product Rule again. So,
So, we have
But, there is another way to do this problem. Notice
Now, you would only need to use the Product Rule once instead of twice.
Exercise 3
Calculate the derivative of
Using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we get
Exercise 4
Calculate the derivative of
First, using the Quotient Rule, we have
Now, we need to use the Product Rule. So, we have
So, we have