Difference between revisions of "031 Review Part 3, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 6: | Line 6: | ||
<span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | <span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 40: | Line 39: | ||
|- | |- | ||
| | | | ||
| − | ::<math>A\vec{u}=\vec{0}</math> and <math>A\vec{v}=\vec{0}</math> | + | ::<math style="vertical-align: -1px">A\vec{u}=\vec{0}</math> and <math style="vertical-align: 0px">A\vec{v}=\vec{0}</math> |
|- | |- | ||
|since <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> are eigenvectors of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0. | |since <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> are eigenvectors of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0. | ||
| Line 56: | Line 55: | ||
& = & \displaystyle{A\vec{u}-2A\vec{v}}\\ | & = & \displaystyle{A\vec{u}-2A\vec{v}}\\ | ||
&&\\ | &&\\ | ||
| − | & = & \displaystyle{\vec{0}-2\vec{0}}\\ | + | & = & \displaystyle{\vec{0}-2\cdot \vec{0}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\vec{0}.} | & = & \displaystyle{\vec{0}.} | ||
| Line 98: | Line 97: | ||
| '''(a)''' See solution above. | | '''(a)''' See solution above. | ||
|- | |- | ||
| − | | '''(b)''' <math style="vertical-align: -3px">\text{dim Col }A=3 | + | | '''(b)''' <math style="vertical-align: -3px">\text{dim Col }A=3</math> |
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:14, 15 October 2017
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of
| Foundations: |
|---|
| 1. An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
|
| 2. By the Rank Theorem, if is a matrix, then |
|
|
Solution:
(a)
| Step 1: |
|---|
| First, notice |
|
|
| since is a basis of the eigenspace corresponding to the eigenvalue 0 of |
| Also, we have |
|
| since and are eigenvectors of corresponding to the eigenvalue 0. |
| Step 2: |
|---|
| Now, we have |
|
|
| Hence, is an eigenvector of corresponding to the eigenvalue |
(b)
| Step 1: |
|---|
| Since is a basis for the eigenspace of corresponding to the eigenvalue 0, we know that |
|
|
| Step 2: |
|---|
| Then, by the Rank Theorem, we have |
| Hence, we have |
|
|
| Final Answer: |
|---|
| (a) See solution above. |
| (b) |