Difference between revisions of "031 Review Part 3, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 
<span class="exam">Give an example of a &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with eigenvalues 5,-1 and 3.
 
<span class="exam">Give an example of a &nbsp;<math style="vertical-align: 0px">3\times 3</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with eigenvalues 5,-1 and 3.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 38: Line 37:
 
         \end{array}\right].</math>
 
         \end{array}\right].</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:06, 15 October 2017

Give an example of a    matrix    with eigenvalues 5,-1 and 3.

Foundations:  
The eigenvalues of a diagonal matrix are the entries on the diagonal.


Solution:

 
One example of such a matrix is
Since    is a diagonal matrix, the eigenvalues of    are the entries on the diagonal.
Hence, the eigenvalues of    are  


Final Answer:  
       One example is  

Return to Review Problems