Difference between revisions of "031 Review Part 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
Line 5: Line 5:
 
           0 & 0 & 2  
 
           0 & 0 & 2  
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 70: Line 69:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:53, 15 October 2017

Find the eigenvalues and eigenvectors of the matrix  

Foundations:  
An eigenvector of a matrix    is a nonzero vector    such that    for some scalar  
In this case, we say that    is an eigenvalue of  


Solution:

Step 1:  
Since    is a triangular matrix, the eigenvalues of    are the entries on the diagonal.
So, the eigenvalues of    are    and  
Step 2:  
Since the matrix is triangular and all the eigenvalues are distinct, the eigenvectors of    are
where each eigenvector has eigenvalue    and    respectively.


Final Answer:  
       The eigenvalues of    are    and    and the corresponding eigenvectors are

Return to Review Problems