Difference between revisions of "031 Review Part 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
Line 21: Line 21:
 
           3  
 
           3  
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
         \end{bmatrix}</math>&nbsp; in the range of &nbsp;<math style="vertical-align: 0px">T?</math>&nbsp; Explain.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 37: Line 36:
 
:where &nbsp;<math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>&nbsp; is the standard basis of &nbsp;<math style="vertical-align: -1px">\mathbb{R}^n.</math>
 
:where &nbsp;<math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>&nbsp; is the standard basis of &nbsp;<math style="vertical-align: -1px">\mathbb{R}^n.</math>
 
|-
 
|-
|'''2.''' A vector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is in the image of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; if there exists &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that
+
|'''2.''' A vector &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; is in the image of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; if there exists &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that
 
|-
 
|-
 
|
 
|
Line 58: Line 57:
 
           5 \\
 
           5 \\
 
           -1
 
           -1
         \end{bmatrix},T(\vec{e_2})=
+
         \end{bmatrix},~T(\vec{e_2})=
 
  \begin{bmatrix}
 
  \begin{bmatrix}
 
           -2.5 \\
 
           -2.5 \\
 
           0.5
 
           0.5
         \end{bmatrix},T(\vec{e_3})=
+
         \end{bmatrix},\text{ and }T(\vec{e_3})=
 
  \begin{bmatrix}
 
  \begin{bmatrix}
 
           10 \\
 
           10 \\
Line 78: Line 77:
 
           5 & -2.5 &10 \\
 
           5 & -2.5 &10 \\
 
           -1 & 0.5 & -2
 
           -1 & 0.5 & -2
         \end{bmatrix}</math>
+
         \end{bmatrix}.</math>
 
|}
 
|}
  
Line 185: Line 184:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(c)''' &nbsp; &nbsp; See above  
+
|&nbsp;&nbsp; '''(c)''' &nbsp; &nbsp; No, see above  
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:27, 15 October 2017

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.

Foundations:  
1. The standard matrix of a linear transformation    is given by
where    is the standard basis of  
2. A vector    is in the image of    if there exists    such that


Solution:

(a)

Step 1:  
Notice, we have
Step 2:  
So, the standard matrix of    is

(b)

Step 1:  
Since    is a linear transformation, we know

       

Step 2:  
Now, we have

       

(c)

Step 1:  
To answer this question, we augment the standard matrix of    with this vector and row reduce this matrix.
So, we have the matrix
Step 2:  

Now, row reducing this matrix, we have

       

From here, we can tell that the corresponding system is inconsistent.
Hence, this vector is not in the range of   


Final Answer:  
   (a)    
   (b)    
   (c)     No, see above

Return to Review Problems