Difference between revisions of "031 Review Part 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 21: | Line 21: | ||
3 | 3 | ||
\end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | \end{bmatrix}</math> in the range of <math style="vertical-align: 0px">T?</math> Explain. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 37: | Line 36: | ||
:where <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math> is the standard basis of <math style="vertical-align: -1px">\mathbb{R}^n.</math> | :where <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math> is the standard basis of <math style="vertical-align: -1px">\mathbb{R}^n.</math> | ||
|- | |- | ||
− | |'''2.''' A vector <math style="vertical-align: 0px">\vec{ | + | |'''2.''' A vector <math style="vertical-align: 0px">\vec{v}</math> is in the image of <math style="vertical-align: 0px">T</math> if there exists <math style="vertical-align: 0px">\vec{x}</math> such that |
|- | |- | ||
| | | | ||
Line 58: | Line 57: | ||
5 \\ | 5 \\ | ||
-1 | -1 | ||
− | \end{bmatrix},T(\vec{e_2})= | + | \end{bmatrix},~T(\vec{e_2})= |
\begin{bmatrix} | \begin{bmatrix} | ||
-2.5 \\ | -2.5 \\ | ||
0.5 | 0.5 | ||
− | \end{bmatrix},T(\vec{e_3})= | + | \end{bmatrix},\text{ and }T(\vec{e_3})= |
\begin{bmatrix} | \begin{bmatrix} | ||
10 \\ | 10 \\ | ||
Line 78: | Line 77: | ||
5 & -2.5 &10 \\ | 5 & -2.5 &10 \\ | ||
-1 & 0.5 & -2 | -1 & 0.5 & -2 | ||
− | \end{bmatrix}</math> | + | \end{bmatrix}.</math> |
|} | |} | ||
Line 185: | Line 184: | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
|- | |- | ||
− | | '''(c)''' | + | | '''(c)''' No, see above |
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:27, 15 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
Foundations: |
---|
1. The standard matrix of a linear transformation is given by |
|
|
2. A vector is in the image of if there exists such that |
|
Solution:
(a)
Step 1: |
---|
Notice, we have |
|
Step 2: |
---|
So, the standard matrix of is |
|
(b)
Step 1: |
---|
Since is a linear transformation, we know |
|
Step 2: |
---|
Now, we have |
|
(c)
Step 1: |
---|
To answer this question, we augment the standard matrix of with this vector and row reduce this matrix. |
So, we have the matrix |
|
Step 2: |
---|
Now, row reducing this matrix, we have |
|
From here, we can tell that the corresponding system is inconsistent. |
Hence, this vector is not in the range of |
Final Answer: |
---|
(a) |
(b) |
(c) No, see above |