Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 16: Line 16:
  
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 132: Line 131:
 
         \end{bmatrix}.</math>
 
         \end{bmatrix}.</math>
 
|-
 
|-
|Hence, a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is  
+
|Therefore, a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is  
 
|-
 
|-
 
|
 
|
Line 182: Line 181:
 
         </math>
 
         </math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:12, 15 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  

Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix    we see that    contains two pivots.
Therefore,

       

Step 2:  
By the Rank Theorem, we have

       

Hence,  

(b)

Step 1:  
From the matrix    we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Step 2:  
To find a basis for    we translate the matrix equation    back into a system of equations
and solve for the pivot variables.
Hence, we have

       

Solving for the pivot variables, we have

       

Hence, the solutions to    are of the form
Therefore, a basis for    is


Final Answer:  
   (a)       and  
   (b)     A basis for    is  
        and a basis for    is  

Return to Review Problems