Difference between revisions of "031 Review Part 1, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
 
Line 28: Line 28:
 
|Hence, the statement is true.
 
|Hence, the statement is true.
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 34: Line 35:
 
|       TRUE
 
|       TRUE
 
|}
 
|}
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_1|'''<u>Return to Review Problems</u>''']]

Latest revision as of 12:22, 15 October 2017

True or false: If    is an invertible    matrix, and    and    are    matrices such that   

then  

Solution:  
Since    is invertible,    exists.
Since    we have
Then, by associativity of matrix multiplication, we have

       

where    is the    identity matrix.
Hence, the statement is true.


Final Answer:  
       TRUE

Return to Review Problems