Difference between revisions of "031 Review Part 1, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
Line 23: Line 23:
 
|So, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be invertible and the statement is true.
 
|So, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must be invertible and the statement is true.
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 29: Line 30:
 
|&nbsp;&nbsp; &nbsp; &nbsp; TRUE
 
|&nbsp;&nbsp; &nbsp; &nbsp; TRUE
 
|}
 
|}
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_1|'''<u>Return to Review Problems</u>''']]

Latest revision as of 12:20, 15 October 2017

True or false: Let    for    matrices    and    If    is invertible, then    is invertible.

Solution:  
If    is not invertible, then  
Since    we have
Since    we know    is not invertible, which is a contradiction.
So,    must be invertible and the statement is true.


Final Answer:  
       TRUE

Return to Review Problems