Difference between revisions of "031 Review Part 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
Line 23: Line 23:
 
|-
 
|-
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 29: Line 30:
 
|       FALSE
 
|       FALSE
 
|}
 
|}
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_1|'''<u>Return to Review Problems</u>''']]

Latest revision as of 12:00, 15 October 2017

True or false: If all the entries of a    matrix    are    then    must be  

Solution:  
If all the entries of    are    then all the rows of    are identical.
So, when you row reduce    it is row equivalent to a matrix    where    contains a row of zeros.
Then,
But,    is a scalar multiple of   
So,
and the statement is false.


Final Answer:  
       FALSE

Return to Review Problems