Difference between revisions of "031 Review Part 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a triangular matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
 +
|-
 +
|So, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: -4px">1,-1,</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">2.</math>
 
|}
 
|}
  

Revision as of 15:31, 13 October 2017

Find the eigenvalues and eigenvectors of the matrix  


Foundations:  
An eigenvector of a matrix    is a nonzero vector    such that    for some scalar  
In this case, we say that    is an eigenvalue of  


Solution:

Step 1:  
Since    is a triangular matrix, the eigenvalues of    are the entries on the diagonal.
So, the eigenvalues of    are    and  
Step 2:  


Final Answer:  
      

Return to Sample Exam