Difference between revisions of "031 Review Part 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |Recall: | ||
+ | |- | ||
+ | |1. To diagonalize a matrix, you need to know the eigenvalues of the matrix. | ||
+ | |- | ||
+ | |2. '''Diagonalization Theorem''' | ||
|- | |- | ||
| | | | ||
+ | :An <math style="vertical-align: 0px">n\times n</math> matrix <math style="vertical-align: 0px">A</math> is diagonalizable if and only if <math style="vertical-align: 0px">A</math> has <math style="vertical-align: 0px">n</math> linearly independent eigenvectors. | ||
+ | |- | ||
+ | | | ||
+ | :In fact, <math style="vertical-align: -4px">A=PDP^{-1},</math> with <math style="vertical-align: 0px">D</math> a diagonal matrix, if and only if the columns of <math style="vertical-align: 0px">P</math> are <math style="vertical-align: 0px">n</math> linearly | ||
+ | |- | ||
+ | | | ||
+ | :independent eigenvectors of <math style="vertical-align: 0px">A.</math> In this case, the diagonal entries of <math style="vertical-align: 0px">D</math> are eigenvalues of <math style="vertical-align: 0px">A</math> that | ||
+ | |- | ||
+ | | | ||
+ | :correspond, respectively , to the eigenvectors in <math style="vertical-align: 0px">P.</math> | ||
|} | |} | ||
Revision as of 13:19, 13 October 2017
Find a formula for by diagonalizing the matrix.
Foundations: |
---|
Recall: |
1. To diagonalize a matrix, you need to know the eigenvalues of the matrix. |
2. Diagonalization Theorem |
|
|
|
|
Solution:
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|