Difference between revisions of "031 Review Part 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|An eigenvector of a matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a nonzero vector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that &nbsp;<math style="vertical-align: 0px">A\vec{x}=\lambda\vec{x}</math>&nbsp; for some scalar &nbsp;<math style="vertical-align: 0px">\lambda.</math>
 +
|-
 +
|In this case, we say that &nbsp;<math style="vertical-align: 0px">\lambda</math>&nbsp; is an eigenvalue of &nbsp;<math style="vertical-align: 0px">A.</math>
 
|}
 
|}
  

Revision as of 13:17, 13 October 2017

Find the eigenvalues and eigenvectors of the matrix  


Foundations:  
An eigenvector of a matrix    is a nonzero vector    such that    for some scalar  
In this case, we say that    is an eigenvalue of  


Solution:

Step 1:  
Step 2:  


Final Answer:  
      

Return to Sample Exam