Difference between revisions of "031 Review Part 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Since
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          3 & 0 & 0 \\
 +
          0 & 4 &0\\
 +
          0 & 0 & 3
 +
        \end{bmatrix}</math>
 +
|-
 +
|is a diagonal matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and &nbsp;<math style="vertical-align: -1px">4</math>&nbsp; by the Diagonalization Theorem.
 
|}
 
|}
  

Revision as of 10:25, 13 October 2017

Let  

Use the Diagonalization Theorem to find the eigenvalues of    and a basis for each eigenspace.


Foundations:  
Diagonalization Theorem
An    matrix    is diagonalizable if and only if    has    linearly independent eigenvectors.
In fact,    with    a diagonal matrix, if and only if the columns of    are    linearly
independent eigenvectors of    In this case, the diagonal entries of    are eigenvalues of    that
correspond, respectively , to the eigenvectors in  


Solution:

Step 1:  
Since
is a diagonal matrix, the eigenvalues of    are    and    by the Diagonalization Theorem.
Step 2:  


Final Answer:  
      

Return to Sample Exam