Difference between revisions of "031 Review Part 3, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Recall that the subspace &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is the set of all solutions to &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{0}.</math>
 
|}
 
|}
  
Line 14: Line 14:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -4px">A\cdot A=I,</math>&nbsp; we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible.
 +
|-
 +
|Additionally, since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is row equivalent to the identity matrix.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is row equivalent to the identity matrix, the only solution to &nbsp;<math style="vertical-align: 0px">A\vec{x}=\vec{0}</math>&nbsp; is the trivial solution.
 +
|-
 +
|Hence,
 
|-
 
|-
 
|
 
|
 +
::<math>\text{Nul }A=\Bigg\{\begin{bmatrix}
 +
          0 \\
 +
          0
 +
        \end{bmatrix}\Bigg\}.</math>
 
|}
 
|}
  
Line 27: Line 37:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>\text{Nul }A=\Bigg\{\begin{bmatrix}
 +
          0 \\
 +
          0
 +
        \end{bmatrix}\Bigg\}</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:11, 13 October 2017

Assume    Find  


Foundations:  
Recall that the subspace    is the set of all solutions to  


Solution:

Step 1:  
Since    we know that    is invertible.
Additionally, since    is invertible, we know that    is row equivalent to the identity matrix.
Step 2:  
Since    is row equivalent to the identity matrix, the only solution to    is the trivial solution.
Hence,


Final Answer:  
      

Return to Sample Exam