Difference between revisions of "031 Review Part 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 30: | Line 30: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step 1: | + | !Step 1: |
+ | |- | ||
+ | |To determine whether the vector | ||
|- | |- | ||
| | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | 2 \\ | ||
+ | 6 \\ | ||
+ | 4 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | |is in <math>W^\perp,</math> it suffices to see if this vector is orthogonal to | ||
+ | |- | ||
+ | |the basis elements of <math>W.</math> | ||
+ | |- | ||
+ | |Notice that we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\begin{bmatrix} | ||
+ | 2 \\ | ||
+ | 6 \\ | ||
+ | 4 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\cdot \begin{bmatrix} | ||
+ | 2 \\ | ||
+ | 0 \\ | ||
+ | -1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}} & = & \displaystyle{2(2)+6(0)+4(-1)+0(0)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 39: | Line 70: | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\begin{bmatrix} | ||
+ | 2 \\ | ||
+ | 6 \\ | ||
+ | 4 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\cdot \begin{bmatrix} | ||
+ | -3 \\ | ||
+ | 1 \\ | ||
+ | 0 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}} & = & \displaystyle{2(-3)+6(1)+4(0)+0(0)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, we conclude | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\begin{bmatrix} | ||
+ | 2 \\ | ||
+ | 6 \\ | ||
+ | 4 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\in W^\perp.</math> | ||
|} | |} | ||
Line 45: | Line 101: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>\begin{bmatrix} |
+ | 2 \\ | ||
+ | 6 \\ | ||
+ | 4 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\in W^\perp</math> | ||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 09:57, 13 October 2017
Let Is in Explain.
Foundations: |
---|
Recall that if is a subspace of then |
|
Solution:
Step 1: |
---|
To determine whether the vector |
|
is in it suffices to see if this vector is orthogonal to |
the basis elements of |
Notice that we have |
|
Step 2: |
---|
|
Hence, we conclude |
|
Final Answer: |
---|