Difference between revisions of "031 Review Part 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 1:    
+
!Step 1:  
 +
|-
 +
|To determine whether the vector
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}</math>
 +
|-
 +
|is in  &nbsp;<math>W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to
 +
|-
 +
|the basis elements of &nbsp;<math>W.</math>
 +
|-
 +
|Notice that we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\cdot \begin{bmatrix}
 +
          2 \\
 +
          0 \\
 +
          -1 \\
 +
          0
 +
        \end{bmatrix}} & = & \displaystyle{2(2)+6(0)+4(-1)+0(0)}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 39: Line 70:
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\cdot \begin{bmatrix}
 +
          -3 \\
 +
          1 \\
 +
          0 \\
 +
          0
 +
        \end{bmatrix}} & = & \displaystyle{2(-3)+6(1)+4(0)+0(0)}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Hence, we conclude
 +
|-
 +
|
 +
::<math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\in W^\perp.</math>
 
|}
 
|}
  
Line 45: Line 101:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{bmatrix}
 +
          2 \\
 +
          6 \\
 +
          4 \\
 +
          0
 +
        \end{bmatrix}\in W^\perp</math>
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:57, 13 October 2017

Let    Is    in    Explain.


Foundations:  
Recall that if    is a subspace of    then


Solution:

Step 1:  
To determine whether the vector
is in    it suffices to see if this vector is orthogonal to
the basis elements of  
Notice that we have

       

Step 2:  

       

Hence, we conclude


Final Answer:  
       

Return to Sample Exam