Difference between revisions of "031 Review Part 2, Problem 6"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 37: | Line 37: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |First, we calculate <math>||\vec{v}||.</math> | ||
| + | |- | ||
| + | |We get | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{||\vec{v}||} & = & \displaystyle{\sqrt{(-1)^2+3^2+0^2}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\sqrt{1+9}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\sqrt{10}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 44: | Line 55: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, to get a unit vector in the direction of <math>\vec{v},</math> we take the vector <math>\vec{v}</math> and divide by <math>||\vec{v}||.</math> |
| + | |- | ||
| + | |Hence, we get the vector | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\frac{1}{||\vec{v}||}\vec{v}} & = & \displaystyle{\frac{1}{\sqrt{10}}\begin{bmatrix} | ||
| + | -1 \\ | ||
| + | 3 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | \frac{-1}{\sqrt{10}} \\ | ||
| + | \frac{3}{\sqrt{10}} \\ | ||
| + | 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 14:04, 12 October 2017
Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\vec {v}}={\begin{bmatrix}-1\\3\\0\end{bmatrix}}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}=\begin{bmatrix} 2 \\ 0 \\ 5 \end{bmatrix}.}
(a) Find a unit vector in the direction of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}.}
(b) Find the distance between Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}.}
(c) Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\text{Span }\{\vec{v}\}.} Compute the orthogonal projection of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}} onto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L.}
| Foundations: |
|---|
| 1. The distance between the vectors Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{u}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} is |
|
| 2. The orthogonal projection of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}} onto Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} is |
|
Solution:
(a)
| Step 1: |
|---|
| First, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ||\vec{v}||.} |
| We get |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{||\vec{v}||} & = & \displaystyle{\sqrt{(-1)^2+3^2+0^2}}\\ &&\\ & = & \displaystyle{\sqrt{1+9}}\\ &&\\ & = & \displaystyle{\sqrt{10}.} \end{array}} |
| Step 2: |
|---|
| Now, to get a unit vector in the direction of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v},} we take the vector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{v}} and divide by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ||\vec{v}||.} |
| Hence, we get the vector |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\frac{1}{||\vec{v}||}\vec{v}} & = & \displaystyle{\frac{1}{\sqrt{10}}\begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix}}\\ &&\\ & = & \displaystyle{\begin{bmatrix} \frac{-1}{\sqrt{10}} \\ \frac{3}{\sqrt{10}} \\ 0 \end{bmatrix}.} \end{array}} |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |