Difference between revisions of "031 Review Part 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 51: | Line 51: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We claim that <math>T</math> is not a linear transformation. | ||
| + | |- | ||
| + | |Consider the vectors <math>\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}</math> and <math>\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}.</math> | ||
| + | |- | ||
| + | |Then, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}+\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 2 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |On the other hand, notice | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 0 | ||
| + | \end{bmatrix}+\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
| + | 1\\ | ||
| + | 1 | ||
| + | \end{bmatrix}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0\\ | ||
| + | 2 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
Revision as of 12:30, 12 October 2017
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
| Foundations: |
|---|
| A map is a linear transformation if |
|
|
|
|
|
|
Solution:
(a)
| Step 1: |
|---|
| We claim that is not a linear transformation. |
| Consider the vectors and |
| Then, we have |
|
|
| Step 2: |
|---|
| On the other hand, notice |
|
|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |