Difference between revisions of "031 Review Part 2, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 132: | Line 132: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |To answer this question, we augment the standard matrix of <math style="vertical-align: -1px">T</math> with this vector and row reduce this matrix. | ||
| + | |- | ||
| + | |So, we have the matrix | ||
|- | |- | ||
| | | | ||
| + | ::<math>\left[\begin{array}{ccc|c} | ||
| + | 5 & -2.5 & 10 & -1\\ | ||
| + | -1 & 0.5 & -2 & 3 | ||
| + | \end{array}\right].</math> | ||
|} | |} | ||
| Line 140: | Line 148: | ||
|- | |- | ||
| | | | ||
| + | Now, row reducing this matrix, we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\left[\begin{array}{ccc|c} | ||
| + | 5 & -2.5 & 10 & -1\\ | ||
| + | -1 & 0.5 & -2 & 3 | ||
| + | \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|c} | ||
| + | 5 & -2.5 & 10 & -1\\ | ||
| + | -5 & 2.5 & -10 & 15 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|c} | ||
| + | 5 & -2.5 & 10 & -1\\ | ||
| + | 0 & 0 & 0 & 14 | ||
| + | \end{array}\right].} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |From here, we can tell that the corresponding system is inconsistent. | ||
| + | |- | ||
| + | |Hence, this vector is not in the range of <math style="vertical-align: 0px">T.</math> | ||
|} | |} | ||
| Line 146: | Line 175: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' <math>[T]=\begin{bmatrix} |
| + | 5 & -2.5 &10 \\ | ||
| + | -1 & 0.5 & -2 | ||
| + | \end{bmatrix}</math> | ||
| + | |- | ||
| + | | '''(b)''' <math>\begin{bmatrix} | ||
| + | 45 \\ | ||
| + | -9 | ||
| + | \end{bmatrix}</math> | ||
|- | |- | ||
| − | | '''( | + | | '''(c)''' See above |
|} | |} | ||
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:25, 11 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: |
|---|
| 1. The standard matrix of a linear transformation is given by |
|
|
|
| 2. A vector is in the image of if there exists such that |
|
|
Solution:
(a)
| Step 1: |
|---|
| Notice, we have |
|
|
| Step 2: |
|---|
| So, the standard matrix of is |
|
|
(b)
| Step 1: |
|---|
| Since is a linear transformation, we know |
|
|
| Step 2: |
|---|
| Now, we have |
|
|
(c)
| Step 1: |
|---|
| To answer this question, we augment the standard matrix of with this vector and row reduce this matrix. |
| So, we have the matrix |
|
|
| Step 2: |
|---|
|
Now, row reducing this matrix, we have |
|
|
| From here, we can tell that the corresponding system is inconsistent. |
| Hence, this vector is not in the range of |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) See above |