Difference between revisions of "031 Review Part 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 50: | Line 50: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 1:      | !Step 1:      | ||
| + | |-  | ||
| + | |Notice, we have   | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>T(\vec{e_1})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            5 \\  | ||
| + |            -1  | ||
| + |          \end{bmatrix},T(\vec{e_2})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            -2.5 \\  | ||
| + |            0.5  | ||
| + |          \end{bmatrix},T(\vec{e_3})=  | ||
| + |  \begin{bmatrix}  | ||
| + |            10 \\  | ||
| + |            -2  | ||
| + |          \end{bmatrix}.</math>  | ||
|}  | |}  | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Step 2:    | !Step 2:    | ||
| + | |-  | ||
| + | |So, the standard matrix of  <math style="vertical-align: 0px">T</math>  is  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>[T]=\begin{bmatrix}  | ||
| + |            5 & -2.5 &10 \\  | ||
| + |            -1 & 0.5 & -2  | ||
| + |          \end{bmatrix}</math>  | ||
|}  | |}  | ||
Revision as of 18:56, 11 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: | 
|---|
| 1. The standard matrix of a linear transformation is given by | 
| 
 | 
  | 
| 2. A vector is in the image of if there exists such that | 
| 
 | 
Solution:
(a)
| Step 1: | 
|---|
| Notice, we have | 
| 
 | 
| Step 2: | 
|---|
| So, the standard matrix of is | 
| 
 | 
(b)
| Step 1: | 
|---|
| Step 2: | 
|---|
(c)
| Step 1: | 
|---|
| Step 2: | 
|---|
| Final Answer: | 
|---|
| (a) | 
| (b) |