Difference between revisions of "031 Review Part 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 25: Line 25:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' The standard matrix of a linear transformation &nbsp;<math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math>&nbsp; is given by
 
|-
 
|-
 
|
 
|
 +
::<math>\begin{bmatrix}
 +
          T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n})
 +
        \end{bmatrix}
 +
</math>
 +
|-
 +
|
 +
:where &nbsp;<math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>&nbsp; is the standard basis of &nbsp;<math style="vertical-align: -1px">\mathbb{R}^n.</math>
 +
|-
 +
|'''2.''' A vector &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is in the image of &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; if there exists &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; such that
 +
|-
 +
|
 +
::<math>T(\vec{x})=\vec{v}.</math>
 
|}
 
|}
  

Revision as of 15:18, 11 October 2017

Suppose    is a linear transformation given by the formula

(a) Find the standard matrix for  

(b) Let    Find  

(c) Is    in the range of    Explain.


Foundations:  
1. The standard matrix of a linear transformation    is given by
where    is the standard basis of  
2. A vector    is in the image of    if there exists    such that


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam