Difference between revisions of "031 Review Part 2, Problem 4"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
Kayla Murray (talk | contribs)  | 
				Kayla Murray (talk | contribs)   | 
				||
| Line 25: | Line 25: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | {| class="mw-collapsible mw-collapsed" style = "text-align:left;"  | ||
!Foundations:      | !Foundations:      | ||
| + | |-  | ||
| + | |'''1.''' The standard matrix of a linear transformation  <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math>  is given by  | ||
|-  | |-  | ||
|  | |  | ||
| + | ::<math>\begin{bmatrix}  | ||
| + |            T(\vec{e_1}) & T(\vec{e_2}) & \cdots & T(\vec{e_n})   | ||
| + |          \end{bmatrix}  | ||
| + | </math>  | ||
| + | |-  | ||
| + | |  | ||
| + | :where  <math style="vertical-align: -5px">\{e_1,e_2,\ldots,e_n\}</math>  is the standard basis of  <math style="vertical-align: -1px">\mathbb{R}^n.</math>  | ||
| + | |-  | ||
| + | |'''2.''' A vector  <math style="vertical-align: 0px">\vec{x}</math>  is in the image of  <math style="vertical-align: 0px">T</math>  if there exists  <math style="vertical-align: 0px">\vec{x}</math>  such that  | ||
| + | |-  | ||
| + | |  | ||
| + | ::<math>T(\vec{x})=\vec{v}.</math>  | ||
|}  | |}  | ||
Revision as of 14:18, 11 October 2017
Suppose is a linear transformation given by the formula
(a) Find the standard matrix for
(b) Let Find
(c) Is in the range of Explain.
| Foundations: | 
|---|
| 1. The standard matrix of a linear transformation is given by | 
| 
 | 
  | 
| 2. A vector is in the image of if there exists such that | 
| 
 | 
Solution:
(a)
| Step 1: | 
|---|
| Step 2: | 
|---|
(b)
| Step 1: | 
|---|
| Step 2: | 
|---|
(c)
| Step 1: | 
|---|
| Step 2: | 
|---|
| Final Answer: | 
|---|
| (a) | 
| (b) |