Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 95: Line 95:
 
!Step 2:  
 
!Step 2:  
 
|-
 
|-
|To find a basis for &nbsp;<math>\text{Nul }A</math> we translate the matrix equation &nbsp;<math>Bx=0</math>&nbsp; back into a system of equations  
+
|To find a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; we translate the matrix equation &nbsp;<math style="vertical-align: -1px">Bx=0</math>&nbsp; back into a system of equations  
 
|-
 
|-
 
|and solve for the pivot variables.
 
|and solve for the pivot variables.
Line 117: Line 117:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Hence, the solutions to &nbsp;<math>Ax=0</math>&nbsp; are of the form  
+
|Hence, the solutions to &nbsp;<math style="vertical-align: -1px">Ax=0</math>&nbsp; are of the form  
 
|-
 
|-
 
|
 
|
Line 154: Line 154:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\text{rank }A=2</math>&nbsp; and <math style="vertical-align: -2px">\text{dim Nul }A=2.</math>
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -2px">\text{rank }A=2</math>&nbsp; and &nbsp;<math style="vertical-align: -2px">\text{dim Nul }A=2</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; A basis for &nbsp;<math>\text{Col }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; A basis for &nbsp;<math style="vertical-align: -1px">\text{Col }A</math>&nbsp; is &nbsp;<math>\Bigg\{\begin{bmatrix}
 
           1  \\
 
           1  \\
 
           -1 \\
 
           -1 \\
Line 165: Line 165:
 
           2 \\
 
           2 \\
 
           -6
 
           -6
         \end{bmatrix}\Bigg\}.
+
         \end{bmatrix}\Bigg\}
 
         </math>
 
         </math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for &nbsp;<math>\text{Nul }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
+
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is &nbsp;<math>\Bigg\{\begin{bmatrix}
 
           1  \\
 
           1  \\
 
           \frac{5}{2} \\
 
           \frac{5}{2} \\

Revision as of 17:56, 10 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for    and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  


Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix    we see that    contains two pivots.
Therefore,

       

Step 2:  
By the Rank Theorem, we have

       

Hence,  

(b)

Step 1:  
From the matrix    we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Step 2:  
To find a basis for    we translate the matrix equation    back into a system of equations
and solve for the pivot variables.
Hence, we have

       

Solving for the pivot variables, we have

       

Hence, the solutions to    are of the form
Hence, a basis for    is


Final Answer:  
   (a)       and  
   (b)     A basis for    is  
        and a basis for    is  

Return to Sample Exam