Difference between revisions of "031 Review Part 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 94: Line 94:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2:  
 
!Step 2:  
 +
|-
 +
|To find a basis for &nbsp;<math>\text{Nul }A</math> we translate the matrix equation &nbsp;<math>Bx=0</math>&nbsp; back into a system of equations
 +
|-
 +
|and solve for the pivot variables.
 +
|-
 +
|Hence, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1-x_3+5x_4} & = & \displaystyle{0}\\
 +
&&\\
 +
\displaystyle{-2x_2+5x_3-6x_4} & = & \displaystyle{0.}
 +
\end{array}</math>
 +
|-
 +
|Solving for the pivot variables, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{x_1} & = & \displaystyle{x_3-5x_4}\\
 +
&&\\
 +
\displaystyle{x_2} & = & \displaystyle{\frac{5}{2}x_3-3x_4.}
 +
\end{array}</math>
 +
|-
 +
|Hence, the solutions to &nbsp;<math>Ax=0</math>&nbsp; are of the form
 +
|-
 +
|
 +
::<math>x_3\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix}+x_4\begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}.</math>
 +
|-
 +
|Hence, a basis for &nbsp;<math style="vertical-align: -1px">\text{Nul }A</math>&nbsp; is
 +
|-
 +
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
  
Line 102: Line 154:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\text{rank }A=2</math>&nbsp; and <math style="vertical-align: -2px">\text{dim Nul }A=2.</math>
 +
|-
 +
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; A basis for &nbsp;<math>\text{Col }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          -1 \\
 +
          5
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -4  \\
 +
          2 \\
 +
          -6
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp; &nbsp; &nbsp; &nbsp; and a basis for &nbsp;<math>\text{Nul }A</math>&nbsp; is <math>\Bigg\{\begin{bmatrix}
 +
          1  \\
 +
          \frac{5}{2} \\
 +
          1 \\
 +
          0
 +
        \end{bmatrix},
 +
        \begin{bmatrix}
 +
          -5  \\
 +
          -3 \\
 +
          0 \\
 +
          1
 +
        \end{bmatrix}\Bigg\}.
 +
        </math>
 
|}
 
|}
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:23, 10 October 2017

Consider the matrix    and assume that it is row equivalent to the matrix

(a) List rank    and  

(b) Find bases for  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{Col }A}   and    Find an example of a nonzero vector that belongs to    as well as an example of a nonzero vector that belongs to  


Foundations:  
1. For a matrix    the rank of    is
2.    is the vector space spanned by the columns of  
3.    is the vector space containing all solutions to  


Solution:

(a)

Step 1:  
From the matrix    we see that    contains two pivots.
Therefore,

       

Step 2:  
By the Rank Theorem, we have

       

Hence,  

(b)

Step 1:  
From the matrix    we see that    contains pivots in Column 1 and 2.
So, to obtain a basis for    we select the corresponding columns from  
Hence, a basis for    is
Step 2:  
To find a basis for   we translate the matrix equation    back into a system of equations
and solve for the pivot variables.
Hence, we have

       

Solving for the pivot variables, we have

       

Hence, the solutions to    are of the form
Hence, a basis for    is


Final Answer:  
   (a)       and
   (b)     A basis for    is
        and a basis for    is

Return to Sample Exam